1 информация виды информации носители информации. Носители информации

В современном обществе можно выделить три основных вида носителей информации:

1) бумажный;

2) магнитный;

3) оптический.

Современные микросхемы памяти позволяют хранить в 1 см 3 до 10 10 битов информации, однако это в 100 миллиардов раз меньше, чем в ДНК. Можно сказать, что современные технологии пока существенно проигрывают биологической эволюции.

Однако если сравнивать информационную емкость традиционных носителей информации (книг) и современных компьютерных носителей, то прогресс очевиден:

Лист формата А4 с текстом (набран на компьютере шрифтом 12-го кегля с одинарным интервалом) - около 3500 символов

Страница учебника - 2000 символов

Гибкий магнитный диск – 1,44 Мб

Оптический диск CD-R(W) – 700 Мб

Оптический диск DVD – 4,2 Гб

Флэш-накопитель - несколько Гб

Съемный жесткий диск или Жесткий магнитный диск– сотни Гб

Таким образом, на дискете может храниться 2-3 книги, а на жестком магнитном диске или DVD - целая библиотека, включающая десятки тысяч книг.

Достоинства и недостатки хранения информации во внутренней и внешней памяти. (Достоинство внутренней памяти - быстротавоспроизведения информации, а недостаток- со временем часть информации забывается. Достоинство внешней памяти- большие объемы информации хранится долго, а недостаток- для доступа к определенной информации требуется время (например, чтобы подготовить реферат по предмету необходимо найти, проанализировать и выбрать подходящий материал))

Архив информации

Одним из наиболее широко распространенных видов сервисных программ являются программы, предназначенные для архивации, упаковки файлов путем сжатия хранимой в них информации.

Сжатие информации - это процесс преобразования информации, хранящейся в файле, к виду, при котором уменьшается избыточность в ее представлении и соответственно требуется меньший объем памяти для хранения.

Сжатие информации в файлах производится за счет устранения избыточности различными способами, например за счет упрощения кодов, исключения из них постоянных битов или представления повторяющихся символов или повторяющейся последовательности символов в виде коэффициента повторения и соответствующих символов. Применяются различные алгоритмы подобного сжатия информации.

Сжиматься могут как один, так и несколько файлов, которые в сжатом виде помещаются в так называемый архивный файл или архив.

Архивный файл - это специальным образом организованный файл, содержащий в себе один или несколько файлов в сжатом или несжатом виде и служебную информацию об именах файлов, дате и времени их создания или модификации, размерах и т.п.

Целью упаковки файлов обычно являются обеспечение более компактного размещения информации на диске, сокращение времени и соответственно стоимости передачи информации по каналам связи в компьютерных сетях. Кроме того, упаковка в один архивный файл группы файлов существенно упрощает их перенос с одного компьютера на другой, сокращает время копирования файлов на диски, позволяет защитить информацию от несанкционированного доступа, способствует защите от заражения компьютерными вирусами.

Степень сжатия зависит от используемой программы, метода сжатия и типа исходного файла. Наиболее хорошо сжимаются файлы графических образов, текстовые файлы и файлы данных, для которых степень сжатия может достигать 5 - 40%, меньше сжимаются файлы исполняемых программ и загрузочных модулей - 60 - 90%. Почти не сжимаются архивные файлы. Программы для архивации отличаются используемыми методами сжатия, что соответственно влияет на степень сжатия.

Архивация (упаковка) - помещение (загрузка) исходных файлов в архивный файл в сжатом или несжатом виде. Разархивация (распаковка) - процесс восстановления файлов из архива точно в таком виде, какой они имели до загрузки в архив. При распаковке файлы извлекаются из архива и помещаются на диск или в оперативную память;

Программы, осуществляющие упаковку и распаковку файлов, называются программами-архиваторами .

Большие по объему архивные файлы могут быть размещены на нескольких дисках (томах). Такие архивы называются многотомными. Том - это составная часть многотомного архива. Создавая архив из нескольких частей, можно записать его части на несколько дискет.

Основными характеристиками программ-архиваторов являются:

скорость работы;

сервис (набор функций архиватора);

степень сжатия – отношение размера исходного файла к размеру упакованного файла.

Основными функциями архиваторов являются:

· создание архивных файлов из отдельных (или всех) файлов текущего каталога и его подкаталогов, загружая в один архив до 32 000 файлов;

· добавление файлов в архив;

· извлечение и удаление файлов из архива;

· просмотр содержимого архива;

· просмотр содержимого архивированных файлов и поиск строк в архивированных файлах;

· ввод в архив комментарии к файлам;

· создание многотомных архивов;

· создание самораспаковывающихся архивов, как в одном томе, так и в виде нескольких томов;

· обеспечение защиты информации в в архиве и доступ к файлам, помещенным в архив, защиту каждого из помещенных в архив файлов циклическим кодом;

· тестирование архива, проверка сохранности в нем информации;

· восстановление файлов (частично или полностью) из поврежденных архивов;

· поддержки типов архивов, созданных другими архиваторами и др.

Потребность хранить какую-либо информацию у человека появилась еще в доисторические времена, чему яркий пример - наскальная живопись, которая сохранилась и по сей день. Наскальные рисунки можно по праву назвать самым износостойким носителем информации на данный момент, хотя с портативностью и удобством использования есть некоторые трудности. С появлением ЭВМ (и ПК в частности) разработка емких и удобных в использовании носителей информации стала особенно актуальной.

Бумажные носители

В первых компьютерах использовалась перфокарты и перфорированная бумажная лента, намотанная на бобины, так называемая перфолента. Ее прародителями были автоматизированные ткацкие станки, в частности машина Жаккара, финальный вариант которой был создан изобретателем (в честь которого она и названа) в 1808 году. Для автоматизации процесса подачи нитей использовались перфорированные пластины:

Перфокарты - картонные карточки, которые использовали подобный метод. Их было много разновидностей, как с отверстиями, которые отвечали за "1" в двоичном коде, так и текстового вида. Самым распространенным был формат IBM: размер карты составлял 187х83 мм, на ней инфомация располагалась в 12 строк и 80 столбцов. В современных терминах, одна перфокарта хранила 120 байт информации. Для ввода информации перфокарты нужно было подавать в определенной последовательности.

В перфоленте используется тот же принцип. Информация хранится на ней в виде отверстий. Первые компьютеры, созданные в 40-х годах прошлого века работали как с вводимыми с помощью перфоленты в реальном времени данными, так и использовали некое подобие оперативной памяти, преимущественно с использованием электронно-лучевых трубок. Бумажные носители активно использовались в 20-50 годах, после чего постепенно начали заменяться магнитными носителями.

Магнитные носители

В 50-х годах началось активное развитие магнитных носителей. За основу взято было явление электромагнетизма (образование магнитного поля в проводнике при пропускании тока через него). Магнитный носитель состоит из поверхности, покрытой ферромагнетиком и считывающей/пишущей головки (сердечник с обмоткой). По обмотке протекает ток, появляется магнитное поле определенной полярности (в зависимости от направления тока). Магнитное поле воздействует на ферромагнетик и магнитные частицы в нем поляризуются в направлении действия поля и создают остаточную намагниченность. Для записи данных на разные участки производится воздействие магнитным полем разной полярности, а при считывании данных регистрируются зоны, в которых изменяется направление остаточной намагниченности ферромагнетика. Первыми такими носителями были магнитные барабаны: большие металлические цилиндры, покрытые ферромагнетиком. Вокруг них устанавливались считывающие головки.

После них появился жесткий диск в 1956 году, это был 305 RAMAC компании IBM, который состоял из 50 дисков диаметром 60 см, по размером был соизмерим с большим холодильником современного формата Side-by-Side и весил чуть меньше тонны. Его объем составлял невероятные по тем временам 5 МБ. Головка свободно перемещалась по поверхности диска и скорость работы была выше, чем у магнитных барабанов. Процесс погрузки 305 RAMAC в самолет:

Объем быстро начал увеличиваться и в конце 60-х годов IBM выпустила высокоскоростной накопитель с двумя дисками емкостью по 30 МБ. Производители активно работали над уменьшением габаритов и к 1980 году жесткий диск имел размеры 5.25-дюймового привода. С тех времен конструкция, технологии, объем, плотность и размеры претерпели колоссальных изменений и самыми популярными стали форм-факторы и 3.5, 2.5 дюйма, в меньшей мере - 1.8 дюйма, а объемы уже достигают десятка терабайт на одном носителе.

Некоторое время использовался еще формат IBM Microdrive, который представлял из себя миниатюрный жесткий диск в форм-факторе карты памяти CompactFlash тип II. Выпущен в 2003 году, позже продан компании Hitachi.

Параллельно развивалась магнитная лента. Появилась она вместе с выходом первого американского коммерческого компьютера UNIVAC I в 1951 году. Опять же постаралась компания IBM. Магнитная лента представляла из себя тонкую пластиковую полосу с магниточувствительным покрытием. С тех времен использовалась в самых разных форм-факторах.

Начиная с бобин, ленточных картриджей и заканчивая компакт-кассетами и видеокассетами VHS. В компьютерах использовались начиная с 70 годов и заканчивая 90-ми (уже в значительно меньших количествах). Часто в качестве внешнего носителя к ПК использовался подключаемый магнитофон.

Накопители на магнитной ленте под названием Стримеры применяются и сейчас, преимущественно в промышленности и крупном бизнесе. На данный момент используются бобины стандарта Linear Tape-Open (LTO), а рекорд в этом году поставили IBM и FujiFilm, умудрившись записать на стандартную бобину 154 терабайта информации. Предыдущий рекорд - 2.5 терабайт, LTO 2012 года.

Еще один тип магнитных носителей - дискеты или флоппи-диск. Тут слой ферромагнетика наносится на гибкую, легкую основу и помещается в пластиковый корпус. Такие носители были просты с точки зрения изготовления и отличались невысокой стоимостью. Первая дискета имела форм-фактор 8 дюймов и появилась в конце 60-х. Создатель - опять IBM. К 1975 году емкость достигла 1 МБ. Хотя популярность дискеты заработали благодаря выходцам из IBM, которые основали собственную компанию Shugart Associates и в 1976 году выпустили дискету формата 5.25 дюйма, емкость составляла 110 КБ. К 1984 году емкость уже составляла 1.2 МБ, а Sony подсуетилась с более компактным форм-фактором 3.5 дюйма. Такие дискеты до сих пор можно найти у многих дома.

Компания Iomega выпустила в 1980-х картриджи с магнитными дисками Bernoulli Box, емкостью 10 и 20 МБ, а в 1994 году - так называемые Zip размера 3.5 дюйма объемом 100 МБ, до конца 90-х они достаточно активно использовались, но конкурировать с компакт-дисками им было не по зубам.

Оптические носители

Оптические носители имеют форму дисков, чтение с них ведется с помощью оптического излучения, обычно лазера. Луч лазера направляется на специальный слой и отражается от него. При отражении луч модулируется мельчайшими выемками на специальном слое, при регистрации и декодировании этих изменений восстанавливается записанная на диск информация. Впервые технологию оптической записи с использованием светопропускающего носителя была разработана Дэвидом Полом Греггом в 1958 году и запатентована в 1961 и 1990 годах, а в 1969 году компания Philips создала так называемый LaserDisc , в котором свет отражался. Впервые публике LaserDisc был показан в 1972 году, а в продажу поступил в 1978. По размеру он был близок к виниловым пластинкам и предназначался для фильмов.

В семидесятых годах началась разработка оптических носителей нового образца, в результате Philips и Sony представили в 1980 году формат CD (Compact Disk), который был впервые продемонстрирован в 1980 году. В продажу компакт-диски и аппаратура поступили в 1982 году. Изначально использовались для аудио, помещалось до 74 минут. В 1984 году Philips и Sony создали стандарт CD-ROM (Compact Disc Read Only Memory) для любых типов данных. Объем диска составлял 650 МБ, позже - 700 МБ. Первые диски, которые можно было записывать в домашних условиях, а не на заводе были выпущены в 1988 году и получили названиеCD-R (Compact Disc Recordable), а CD-RW, позволяющие многократную перезапись данных на диске, появились уже в 1997.

Форм-фактор не менялся, увеличивалась плотность записи. В 1996 году появился формат DVD (Digital Versatile Disc), который имел ту же форму и диаметр 12 см, а объем - 4.7 ГБ или 8.5 ГБ у двухслойного. Для работы с DVD-дисками были выпущены соответствующие приводы, обратно совместимые с CD. В последующие годы было выпущено еще несколько стандартов DVD.

В 2002 году миру были представлены два разных и несовместимых формата оптических дисков нового поколения: HD DVD и Blu-ray Disc (BD). В обоих случаях для записи и чтения данных используется голубой лазер с длинной волны 405 нм, что позволило еще увеличить плотность. HD DVD способен хранить 15 ГБ, 30 ГБ или 45 ГБ (один, два или три слоя), Blu-ray - 25, 50, 100 и 128 ГБ. Последний стал более популярен и 2008 году компания Toshiba (один из создателей) отказалась от HD DVD.

Полупроводниковые носители

В 1984 году компания Toshiba предложила полупроводниковые носители, так называемую флэш-память NAND, которая стала популярна спустя десятилетие после изобретения. Второй вариант NOR был предложен Intel в 1988 году и используется для хранения программных кодов, например BIOS. NAND-память используется сейчас в картах памяти , флэшках, SSD-накопителях и гибридных жестких дисках.

Технология NAND позволяет создавать чипы с высокой плотностью записи, она компактна, менее энергозатратна в использовании и имеет более высокую скорость работы (в сравнении с жесткими дисками). Основным минусом на данный момент является достаточно высокая стоимость.

Облачные хранилища

С развитием всемирной сети, увеличением скоростей и мобильного интернета появились многочисленные облачные хранилища, в которых данные хранятся на многочисленных распределенных в сети серверах. Данные хранятся и обрабатываются в так называемом виртуальном облаке и пользователь имеет к ним доступ при наличии доступа в интернет. Физически серверы могут находиться удаленно друг от друга. Есть как специализированные сервисы типа Dropbox, так и варианты компаний-производителей ПО или устройств. У Microsoft - OneDrive (ранее SkyDrive), iCloud у Apple, Google Диск и так далее.

1. Носитель информации как материальная составляющая документа


Сама информация не выступает достаточным признаком документа. Материальная составляющая - одно из двух необходимых и обязательных слагаемых документа, без которого он существовать не может. Материальная составляющая документа - это его вещественная (физическая) сущность, форма документа, обеспечивающая его способность хранить и передавать информацию в пространстве и времени. Материальную составляющую документа определяет материальный носитель информации - материальные объекты, в которых сведения (данные) находят свое отражение в виде символов, образов, сигналов, технических решений и процессов.

Предназначенность документа для хранения и передачи информации в пространстве и времени обусловливает его специфическую материальную конструкцию, представленную в виде книг, газет, буклетов, микрофиш, фильмов, дисков, дискет и т.п.

Эта специальная конструкция обеспечивает выполнение документами их главной функции, давая возможность быть удобными для перемещения в пространстве, устойчивыми для хранения информации во времени, приспособленными для физиологических возможностей чтения сообщения.

Информация, содержащаяся в документе, обязательно закреплена на каком-то специальном материале (бумага, кино-, видео-, аудио-, фотопленка и т.п.), имеющем определенную форму носителя (лента, лист, карточка, барабан, диск и т.п.). Кроме того, информация всегда фиксируется каким-либо способом записи, предусматривающим наличие средств (краска, тушь, чернила, красители, клей и т.п.) и инструментов (ручка, печатный станок, видеокамера, принтер и т.п.).

Материальная основа документа - совокупность материалов, использованных для записи сообщения (текста, звука, изображения) и составляющих носитель информации. В зависимости от материальной основы документы делятся на две большие группы: естественные и искусственные. Искусственные в свою очередь подразделяются на бумажные документы и документы на небумажной основе - полимерные документы (полимерно-пленочные и полимерно-пластиночные).

Наиболее массовым типом являются носители на бумажной основе. Большинство современных документов, функционирующих в обществе, выполнены на бумажной основе или заменителях бумаги. Их называют бумажными, т.е. имеющими бумажный носитель.

В этих носителях информация отображается в виде символов и образов. Такая информация отнесена к разряду документированной информации и представляет собой различные виды документов.

К бумажным относятся деловые документы, научно-техническая документация, книги, журналы, газеты, рукописи, карты, ноты, изоиздания, перфоленты, перфокарты и др.

Бумага соответствует многим требованиям: относительно проста в изготовлении, доступна, в меру прочна, достаточно долго хранится и позволяет легко фиксировать информацию. Самое ценное качество бумаги - она позволяет тиражировать информацию. Массовое распространение информации с помощью книгопечатания стало возможным лишь в результате промышленного изготовления бумаги.

Появление искусственных носителей на полимерной основе (шеллак, полихромвинил, полупроводник, биомасса) пополнило видовое разнообразие документов, способных нести звуковую речь, музыку, движущееся и объемное изображение. Были созданы грампластинки, магнитные пленки, фото- и кинопленки, магнитные и оптические диски - материальные носители такой информации, которая не может быть зафиксирована на бумаге.

К полимерно-пленочным документам относятся: кинодокументы (кино-, диа-, видеофильм), фотодокументы (диапозитив, микрофильм, микрокарта, микрофиша), фонодокументы (магнитные фонограммы для записи изображения и звука), документы для использования в ЭВМ (перфоленты).

Группу полимерно-пластиночных документов составляют: гибкий магнитный диск, магнитная карта, гибкая и жесткая грампластинка, оптический диск - как жесткий, так и мягкий.

Передача документированной информации во времени и пространстве непосредственно связана с физическими характеристиками её материального носителя. Документы, будучи массовым общественным продуктом, отличаются сравнительно низкой долговечностью. Во время своего функционирования в оперативной среде и особенно при хранении они подвергаются многочисленным негативным воздействиям, вследствие перепадов температуры, влажности, под влиянием света, биологических процессов и т.д.

Поэтому не случайно проблема долговечности материальных носителей информации во все времена привлекала внимание участников процесса документирования. Уже в древности наблюдается стремление зафиксировать наиболее важную информацию на таких сравнительно долговечных материалах, как камень, металл.

В процессе документирования наблюдалось стремление использовать качественные, стойкие краски, чернила.

Однако, решая проблему долговечности, человек сразу же вынужден был заниматься и другой проблемой, заключавшейся в том, что долговечные носители информации были, как правило, и более дорогостоящими. Поэтому постоянно приходилось искать оптимальное соотношение между долговечностью материального носителя информации и его стоимостью. Эта проблема до сих пор остаётся весьма важной и актуальной.

Наиболее распространённый в настоящее время материальный носитель документированной информации - бумага - обладает относительной дешевизной, доступностью, удовлетворяет необходимым требованиям по своему качеству и т.д. Однако в то же время бумага является горючим материалом, боится излишней влажности, плесени, солнечных лучей, нуждается в определённых санитарно-биологических условиях. Использование недостаточно качественных чернил, краски приводят к постепенному угасанию текста на бумаге.

В конце 20-го века с развитием компьютерных технологий и использованием принтеров для вывода информации на бумажный носитель вновь возникла проблема долговечности бумажных документов. Дело в том, что многие современные распечатки текстов на принтерах водорастворимы и выцветают. Более долговечные краски, в частности, для струйных принтеров, естественно, являются и более дорогими, а значит - менее доступными для массового потребителя. Материальные носители документированной информации требуют, таким образом, соответствующих условий для их хранения.

Таким образом, под материальной составляющей документа имеют в виду: 1) материальную основу документа; 2) форму носителя информации и 3) способ документирования или записи информации.


2. Форма материального носителя электронной информации


Научно-технический прогресс привел к появлению так называемой электронной документации. Ее специфика заключается в том, что человек не может воспринять электронный документ в том физическом виде, в каком он зафиксирован на носителе.

Кроме того, электронные документы находятся в прямой зависимости от информационных технологий, которые имеют необратимую тенденцию изменяться и устаревать по мере научно-технического прогресса в области техники и программного обеспечения. В этой связи велика опасность утраты доступа к таким документам через определенный промежуток времени.

Несмотря на массовое использование в литературе и практической деятельности термина «электронный документ», его определение еще не устоялось. Вместе с тем, ряд авторов считают, что электронный документ - это «документ, носителем которого является электронная среда - магнитный диск, магнитная лента, компакт-диск и т.д.»

В понятии электронного документа можно выделить три известные составляющие: зафиксированная информация, носитель, идентификационные реквизиты, что не выходит за рамки существующего определения документа.

К сожалению, в отличие от информации, зафиксированной на бумажном носителе, информация на машиночитаемом носителе может быть легко изменена без желания ее автора в результате несанкционированного доступа к ней постороннего лица, причем без всяких следов такого вмешательства.

Возникла проблема установления доказательственной силы машиночитаемого документа.

Классическая правовая трактовка термина документ (от лат. documentum - доказательство) связана с письменной формой хранения информации. Действительно, в традиционных бумажных документах реквизиты и содержание документа неразрывно связаны с материальным носителем документа.

В электронных же документах каждая из этих составляющих относительно самостоятельна, что обусловлено особенностями их изготовления, обработки, хранения и передачи. Эта особенность во многом определяет специфику правового статуса электронных документов.

В качестве юридических признаков документа на машинном носителе выступают:

·машинный носитель информации;

·компьютерная информация;

·реквизиты, позволяющие идентифицировать форму и содержание компьютерной информации.

Для категории электронного документа особое значение имеет четкое законодательное урегулирование его реквизитов, т. к. именно они придают информации на материальном носителе статус документа.

Технология изготовления, хранения и передачи электронных документов коренным образом отличается от письменных документов и уже в силу этого реквизиты, успешно выполняющие свои функции в традиционных документах (подпись руководителя, печать, банковские реквизиты сторон, фирменные бланки и пр.), далеко не всегда приемлемы для них. В отношении электронных документов только электронная цифровая подпись в полной мере может выполнять функции реквизита.

Распространение документированной информации, снабженной электронной цифровой подписью, в системах связи и телекоммуникации аналогично распространению оригинала документов на бумажном носителе традиционными способами.

Распространение же документированной информации на машиночитаемом носителе без электронной цифровой подписи или других аналогичных средств идентификации подобно передаче или устной информации, идентичность которой гипотетическому оригиналу может быть подтверждена показаниями свидетелей, или копии документа, по отношению к которой требуется возможными способами доказать соответствие ее оригиналу.

Таким образом, для управленческого документа существенным является носитель информации. Носители документной информации изменяются в ходе технического прогресса. С развитием новых информационных технологий появляются так называемые электронные документы, носители информации которых принципиально отличаются от «бумажных».

Перевод информации на машиночитаемые носители вместо бумажных потребовал введения новых механизмов обеспечения «юридической силы» или «доказательственной силы» документа на таком носителе, например, электронной цифровой подписи.


. Классификация документов на современных материальных носителях


Информатизация общества, бурное развитие микрографии, компьютерной техники и проникновение ее во все сферы человеческой деятельности определили появление документов на небумажных носителях информации.

Эти документы в отличие от традиционных, т.е. бумажных, как правило, требуют для воспроизведения информации использования технических средств. К этой группе принадлежат документы в виде фильмов, микрофиш, звуковых магнитных записей, а также в виде дискретных носителей для компьютерного чтения (дисков, дискет) и т.п.

Носители информации на перфолентах, перфокартах, магнитных и оптических носителях, а также прочие документы, предназначенные для перевода на другую языковую систему, принято относить к группе матричных документов. Документы на эти носителях информации, как правило, не поддаются непосредственному восприятию, считыванию.

Информация хранится на машинных носителях, а часть документов создается и используется непосредственно в машиночитаемой форме.

По предназначенности для восприятия рассматриваемые документы относятся к машиночитаемым. Это документы, предназначенные для автоматического воспроизведения находящейся в них информации. Содержание таких документов полностью или частично выражено знаками (перфорация, матричная магнитная запись, матричное расположение знаков, цифр и т.п.), приспособленными для автоматического считывания. Информация записывается на перфорационных картах или лентах, магнитных лентах, картах, дискетах, специальных бланках и подобных носителях.

Документы на современных носителях информации относятся к классу технически-кодированных, содержащих запись, доступную для воспроизведения только с помощью технических средств, в том числе звуковоспроизводящей, проекционной аппаратуры или компьютера.

Из всего массива существующих документов рассматриваемая группа выделяется по способу записи и считывания информации. В соответствии с этим признаком документы на новейших носителях информации делят на:

·документы на перфорированных носителях информации (перфорированные документы), в состав которых входят перфокарты, перфоленты, апертурные карты;

·документы на магнитных носителях информации (магнитные документы), в состав которых входят магнитные ленты, магнитные карты, магнитные диски гибкие (дискеты) и жесткие, а также видеодиски;

·документы на оптических носителях информации (оптические документы), группу которых составляют микрографические документы (микрофильмы, микродиски, микрокарты) и оптические диски;

·документы на голографических носителях информации (голографические документы). К ним относят голограммы.

По характеру связи документов с технологическими процессами в автоматизированных системах различают:

·машинно-ориентированный документ, предназначенный для записи и считывания части содержащейся в нем информации средствами вычислительной техники (заполненные специальные формы бланков, анкет и т.п.);

·машиночитаемый документ, пригодный для автоматического считывания содержащейся в нем информации с помощью сканера (текстовые, графические и другие виды записи, почтовый индекс);

·документ на машиночитаемом носителе, созданный средствами вычислительной техники, записанный на машиночитаемый носитель: магнитную ленту (МЛ), магнитный диск (МД), дискету, оптический диск и т.п. - и оформленный в установленном порядке;

·документ-машинограмма (распечатка), созданный на бумажном носителе с помощью средств вычислительной техники и оформленный в установленном порядке;

·документ на экране дисплея, созданный средствами вычислительной техники, отраженный на экране дисплея (монитора) и оформленный в установленном порядке;

электронный документ, содержащий совокупность информации в памяти вычислительной машины, предназначенный для восприятия человеком с помощью соответствующих программных и аппаратных.


. Характеристика материальных носителей информации и их развитие


Появление письменности стимулировало поиски и изобретение специальных материалов для письма. однако на первых порах человек использовал для этой цели наиболее доступные материалы, которые можно было без особых усилий найти в окружающей среде: пальмовые листья, раковины, древесную кору, черепаховые щитки, кости, камень, бамбук и т.д. к примеру, философские наставления Конфуция (середина 1 тыс. до н.э.) первоначально были записаны на бамбуковых дощечках. в Древней Греции и Риме, наряду с деревянными дощечками, покрытыми слоем воска, использовались также металлические (бронзовые либо свинцовые) таблицы, в Индии - медные пластины, а Древнем Китае - бронзовые вазы, шелк.

На территории Древней Руси писали на коре березы - бересте. К настоящему времени найдено свыше I тыс. берестяных грамот того времени, древнейшая из которых относится к первой половине XI века. археологи обнаружили даже миниатюрную берестяную книжечку из двенадцати страниц, в которой двойные листы сшиты по сгибу. Подготовка бересты к процессу записи была несложной. Предварительно ее кипятили, затем соскабливали внутренний слой коры и обрезали по краям. в результате получался материал основы документа в виде ленты или прямоугольника. Грамоты сворачивались в свиток. При этом текст оказывался с наружной стороны.

На бересте писали не только в Древней Руси, но и в Центральной и Северной Европе. Обнаружены берестяные грамоты на латыни. Известен случай, когда в 1594 г. 30 пудов бересты для письма было даже продано нашей страной в Персию.

Основным материалом для письма у народов Передней Азии первоначально являлась глина, из которой изготавливались слегка выпуклые плитки. После нанесения нужной информации (в виде клинообразных знаков) сырые глиняные плитки высушивались или обжигались, а затем помещались в специальные деревянные или глиняные ящики либо в своеобразные глиняные конверты.

Использование природных материалов для целей письма имело место и в более поздние времена. Например, в отдаленных уголках России даже в 18 веке иногда писали на бересте.

Исторически первым материалом, который специально изготовлялся для письма, был папирус. Его изобретение примерно в середине третьего тысячелетия до н.э. стало одним из важнейших достижений египетской культуры. Главными преимуществами папируса были компактность и легкость. Папирус производился из рыхлой сердцевины стеблей нильского тростника в виде тонких желтоватых листов, которые затем склеивали в полосы длиной в среднем до 10 м (их размеры достигали 40 и более м) и шириной до 30 см. Из-за большой ломкости запись на папирусе велась с одной стороны, и хранили ее в виде свитка.

Папирус использовался не только в Древнем Египте, но и в других странах Средиземноморья, причем в Западной Европе - вплоть до 20 века.

Другим материальным носителем растительного происхождения, была тапа. По преимуществу тапа использовалась в экваториальной зоне (в Центральной Америке, на Гавайских островах). Она изготавливалась из лыка, луба, в частности, бумажного шелковичного дерева. Лыко промывалось, очищалось от неровностей, а затем отбивалось молотком, разглаживалось и просушивалось. Самым известным материалом животного происхождения, специально изготавливавшемся для целей письма и получившим широкое распространение в эпоху древности и средневековья, был пергамент. В отличие от папируса, производившего только в Египте, пергамент можно было получить в любой стране, так как изготавливался он из шкур животных путем очистки, промывки, просушки, растяжки с последующей обработкой мелом и пемзой. В нашей стране пергамент тали изготовлять только в 15 веке, а до этого его привозили из-за границы.

на пергаменте можно было писать с обеих сторон. Он был гораздо прочнее и долговечнее папируса. Однако пергамент являлся весьма дорогим материалом. Этот существенный недостаток пергамента удалось преодолеть лишь в результате появления бумаги.

Бумага (от итал. «» - хлопок) была изобретена в Китае во 2 веке до н.э. В 105 г. китаец Цай Лунь усовершенствовал процесс ее изготовления, предложив использовать в качестве сырья молодые побеги бамбука, кору тутовых деревьев, ивы, а также пеньку и тряпье.

Лишь в начале 7 века секрет изготовления бумаги стал известен в Корее и Японии, затем и в других странах Востока, а в XII веке - и в Европе.

На Руси использование этого материала для письма началось в XIV веке. Первоначально бумага была привозной, однако в период правление Ивана IV в России была построена первая «бумажная мельница» около Москвы, которая просуществовала малое количество времени. Но уже в XVII столетии в стране работало 5 бумагоделательных предприятий, а в XVIII веке - 52.

До середины XIX века практически вся европейская, в том числе и российская, бумага изготавливалась из льняного тряпья. Его промывали, проваривали с содой, едким натром или известью, сильно разбавляли водой и размалывали на особых мельницах. Затем жидкую массу черпали специальной прямоугольной формой с прикрепленной к ней сеткой из проволоки. После стекания воды на металлическом сите оставался тонкий слой бумажной массы. Полученные таким образом влажные бумажные листы укладывали между отрезами грубого сукна или войлока, с помощью пресса отжимали воду и просушивали.

Металлические нити сетки оставляли на бумаге, изготовленной ручным способом, следы, видимые на просвет, поскольку бумажная масса в местах ее соприкосновения с проволокой была менее плотной. Эти следы получили название филиграней или водяного знака.

К настоящему времени известно около 175 тыс. филиграней, сделанных в разное время на бумажных мельницах и мануфактурах. Водяные знаки являлись торговой маркой, а также одним из средств защиты от подделки документов.

Между тем бумажное производство совершенствовалось и постепенно механизировалась. В 1670 г. в Голландии был изобретен ролл - механизм для измельчения волокон. Французский химик Клод Луи Бертолле в 1789 г. предложил способ отбеливания тряпья хлором, способствующий улучшению качества бумаги. А в 1798 г. француз Н.Л. Роббер получил патент на изобретение бумагоделательной машины. В России первая такая машина была установлена в 1818 г. на Петергофской бумажной фабрике. В настоящее время принцип работы бумагоделательных машин остается тем же, что и сотни лет тому назад. Однако современные машины обладают гораздо большей производительностью.

Важнейшим шагом в развитии бумагоделательного производства стало изготовление бумаги из древесины начиная с 1845 г. Это открытие связано с именем саксонского ткача Ф. Келлера. Древесное сырье становится основным в бумажной промышленности.

В 20 веке продолжалось совершенствование бумажного носителя информации. С 1950-х гг. в производстве бумаги стали применяться полимерные пленки и синтетические волокна, в результате чего появилась принципиально новая, синтетическая бумага - бумага - пластикат. Она отличается повышенной механической прочностью, стойкостью к химическим воздействиям, термостойкостью, долговечностью, высокой эластичностью и некоторыми другими ценными качествами.

Развитие материальных носителей документированной информации в целом идёт по пути непрерывного поиска объектов с высокой долговечностью, большой информационной ёмкостью при минимальных физических размерах носителя. Начиная с 1980-х годов, всё более широкое распространение получают оптические (лазерные) диски. Это пластиковые или алюминиевые диски, предназначенные для записи и воспроизведения информации при помощи лазерного луча.

В настоящее время оптические (лазерные) диски являются наиболее надёжными материальными носителями документированной информации, записанной цифровым способом.

Впервые оптический диск был разработан и продемонстрирован в 1979 г. фирмой Philips. Первая оптическая запись звуковых программ для бытовых целей осуществлена в 1982 г. фирмой Sony в лазерных проигрывателях на компакт - дисках, которые стали обозначаться аббревиатурой CD (Compact Disk).

В середине 1980-х гг. были созданы компакт - диски с постоянной памятью - CD - ROM (Compact Disk - Read Only Memory). C 1995 г. стали использоваться перезаписываемые оптические компакт - диски: CD - R (CD Recordable) и CD - E (CD Erasable).

Оптический документ аккумулирует в себе преимущества различных способов записи информации и материалов носителя. Важным достоинством данного носителя информации является, во-первых, его универсальность, т.е. возможность записи и хранения в единой цифровой форме информации любого вида - звуковой, текстовой, графической, видео. Во-вторых, оптический документ дает возможность организации и хранения информации в виде баз данных на едином оптическом носителе. В-третьих, этот документ обеспечивает возможность создания интегрированных информационных сетей, обеспечивающих доступ к таким базам данных.

Оптический документ - это интегральный вид документа, способный вобрать в себя достоинства и возможности книги, видеофильмов, аудиозаписи одновременно. Он необходим для длительного хранения больших массивов информации.

Самым перспективным видом оптического документа, выделяемым по форме носителя и особенностям пользования, является оптический диск - материальный носитель, на котором информация записывается и считывается с помощью сфокусированного лазерного луча.

Компакт-диски изготавливаются из поликарбоната толщиной 1,2 мм, покрытым тончайшим слоем алюминия (ранее использовалось золото) с защитным слоем из лака, на котором обычно печатается этикетка.

По технологии применения оптические, магнитооптические и цифровые компакт-диски делятся на 3 основных класса:

1.Диски, допускающие однократную запись и многократное воспроизведение сигналов без возможности их стирания (CD-R; CD-WORM - Write - Once, Read - Many - один раз записал, много раз считал). Используются в электронных архивах и банках данных, во внешних накопителях ЭВМ.

2.Реверсивные оптические диски, позволяющие многократно записывать, воспроизводить и стирать сигналы (CD-RW, CD-E). Это наиболее универсальные диски, способные заменить магнитные носители практически во всех областях применения.

.Цифровые универсальные видеодиски DVD (Digital Versatile Disk) типа DVD-ROM, DVD-RAM, DVD-R с большой ёмкостью (до 17 Гбайт).

Вместе с тем активно ведутся работы по созданию ещё более компактных носителей информации с использованием, так называемых нанотехнологий, работающих с атомами и молекулами. Плотность упаковки элементов, собранных из атомов, в тысячи раз больше, чем в современной микроэлектронике. В результате один компакт-диск, изготовленный по нанотехнологии, может заменить тысячи лазерных дисков.

Таким образом, внедрение оптической технологии в документно-информационную сферу может рассматриваться как начало новой эры в распространении, хранении, использовании документированной информации.

Классификация материальных носителей магнитной записи:

·геометрической форме и размерам (форма ленты, диска, карты и т.д.);

·по внутреннему строению носителей (два или несколько слоёв различных материалов);

·по способу магнитной записи (носители для продольной и перпендикулярной записи);

·по виду записываемого сигнала (для прямой записи аналоговых сигналов, для модуляционной записи, для цифровой записи).

Самым первым носителем магнитной записи, на котором фиксировалась информация в аппаратах Поульсена на рубеже 19-20 вв., была стальная проволока диаметром до 1 мм. В начале 20 столетия для этих целей использовалась также стальная катаная лента. Однако качественные характеристики этих носителей были весьма низкими. Достаточно сказать, что для производства 14-часовой магнитной записи докладов на Международном конгрессе в Копенгагене в 1908 г. потребовалось 2500 км проволоки весом около 100 кг. Кроме того, в процессе использования проволоки и стальной ленты возникала трудноразрешимая проблема соединения отдельных их кусков. Стальной магнитный диск, первый патент на который был выдан еще в 1906 г., не получил тогда применения.

Лишь со второй половины 1920-х гг., когда была изобретена порошковая магнитная лента, началось широкомасштабное применение магнитной записи. Патент на технологию нанесения ферромагнитного порошка на пленку получил в 1928 г. Фриц Пфеймер в Германии. Первоначально магнитный порошок наносился на бумажную подложку, затем - на ацетилцеллюлозу, пока не началось применение в качестве подложки высокопрочного материала - полиэтилентерефталата (лавсна). Совершенствовалось также и качество магнитного порошка. Стали использоваться, в частности, порошки оксида железа с добавкой кобальта, оксида хрома, металлические магнитные порошки железа и его сплавов, что позволило в несколько раз увеличить плотность записи. На подложку рабочий слой наносится путем вакуумного напыления или электролитического осаждении в виде магнитного порошка, связующего вещества, растворителя, пластификатора и различных добавок.

Кроме гибкой основы рабочего магнитного слоя в ленте могут быть и дополнительные слои: защитный - на поверхности рабочего слоя и антифрикционный - на тыльной стороне ленты, с целью предохранения рабочего слоя от механического износа, повышения механической прочности ленты и для улучшения ее скольжения по поверхности магнитной головки. Антифрикционный слой снимает также электрические заряды, которые накапливаются на магнитной ленте. Промежуточный (подслой) между основой и рабочим слоем служит для улучшения сцепления рабочего и антифрикционного слоев с основой.

В отличие от носителей механической звукозаписи, магнитная лента пригодна для многократной записи информации. Число таких записей очень велико и ограничивается только механической прочностью самой магнитной ленты. Первые магнитофоны, появившиеся в 1930 - е гг., были катушечными. В них магнитная лента наматывалась на катушки.

В 1963 г. фирмой Philips была разработана кассетная запись, позволившая применять очень тонкие магнитные ленты. Их максимальная толщина составляет всего 20 мкм при ширине 3,81 мм. В кассетных магнитофонах обе катушки находятся в специальном компакт-кассете и конец пленки заранее закреплен на пустой катушке. Запись на компакт-кассетах составляет обычно 60, 90 и 120 минут.

В конце 1970-х гг. появились микрокассеты размером 50*33*8 мм, т.е. величиной в спичечную коробку, для портативных диктофонов и телефонов с автоответчиками, а в середине 190-х гг. - пикокассеты - втрое меньше микрокассет.

С 1952 г. магнитная лента стала использоваться для хранения информации в электронно-вычислительных машинах. Преимуществом магнитной ленты является возможность осуществлять запись плотностью за счет того, что общая площадь поверхности магнитного слоя у ленты значительно выше, чем у остальных типов носителей, и ограничена только длинной ленты. Накопители на кассетной магнитной ленте - картриджи могут достигать емкости до 40 Гбайт.

В электронно-вычислительных машинах на первых порах использовались также магнитные барабаны.

С начала 1960-х гг. широкое применение, прежде всего в запоминающих устройствах ЭВМ, получили магнитные диски, в настоящее время они наиболее используемые в работе с документированной информацией.

Магнитный диск - носитель информации в виде диска с ферримагнитным покрытием для записи. Магнитные диски делятся на жесткие и гибкие (дискеты).

Жесткий магнитный диск (винчестер) - это круглая плоская пластинка, изготовленная из твердого материала (металла), покрытого ферримагнитным слоем. Он предназначен для постоянного хранения информации, используемой при работе с персональным компьютером и устанавливаются внутри него.

Винчестеры значительно превосходят гибкие диски. Они имеют лучшие характеристики емкости, надежности и скорости доступа к информации. Поэтому их применение обеспечивает скоростные характеристики диалога пользователя и реализуемых программ, расширяет системные возможности по использованию баз данных, организации многозадачного режима работы, обеспечивает эффективную поддержку механизма виртуальной памяти.

Гибкий диск (флоппи-диск) или дискета - это диск, изготовленный из пластика, покрытого ферримагнитным слоем. Гибкий магнитный диск широко используется в персональных компьютерах и является сменным носителем документированной информации. Он хранится вне компьютера и устанавливается в накопитель по мере необходимости.

В настоящее время чаще всего используются дискеты емкостью 1,44 Мбайт. Они позволяют переносить документ и программы с одного компьютера на другой, хранить информацию, не используемую постоянно в компьютере, делать архивные копии информации, содержащейся на жестких дисках.

Широкое применение, прежде всего в банковских системах, нашли так называемые пластиковые карты, представляющие собой устройства для магнитного способа хранения информации и управления данными.

Пластиковая карта представляет собой документ, выполненный на основе металла, бумаги или пластика стандартной прямоугольной формы, хотя бы один из реквизитов которого находится в форме, доступной восприятию средствами электронно-вычислительной техники и электросвязи. Пластиковые карты бывают двух типов: простые и интеллектуальные. В простых картах имеется лишь магнитная память, позволяющая заносить данные и изменять их. В интеллектуальных картах, которые иногда называют смарт-картами (от англ. smart - умный), кроме памяти, встроен ещё и микропроцессор. Он даёт возможность производить необходимые расчёты и делает пластиковые карты многофункциональными.

Технологии и материальные носители магнитной записи постоянно совершенствуются. В частности, наблюдается тенденция к увеличению плотности записи информации на магнитных дисках при уменьшении его размеров и снижении среднего времени доступа к информации.

На перфорированном документе информация записана путем перфорирования (пробивки) отверстий (перфораций) или вырезки соответствующих участков материального носителя.

В зависимости от назначения документы на перфоносителях подразделяют на три типа:

1.для управления автоматическими устройствами при выполнении различных операций в процессе изготовления и контроля спроектированных изделий;

2.для управления, обработки, преобразования информации при проектировании изделий на ЭВМ;

.для использования в процессе обработки и преобразования.

Запись информации на перфорированных документах может быть выполнена на непрерывной ленте или на карточках, представляющих собой как бы отрезки такой ленты, или на плоскости, на которой запись информации производится способом перфорирования. Поэтому по материальной конструкции носителя перфорированные документы делят на карточные (перфокарты, апертурные карты) и ленточные (перфоленты).

Перфокарты и перфоленты можно сгруппировать в виды по следующим признакам:

·каналу восприятия - перфокарты и перфоленты относятся к визуальным документам;

·материальной основе - искусственные, бумажные, реже пластмассовые (перфокарты) и целлулоидные или лавсановые (перфоленты);

·предназначенности для восприятия различают машиночитаемые (перфокарты машинной сортировки) и человекочитаемые (перфокарты ручной сортировки);

·расположению матрицы различают перфокарты с краевой и внутренней перфорацией;

·способу кодирования - вырезные с перфорацией, вырезаемой в процессе кодирования, и пробивные с перфорацией, получаемой при кодировании;

·способу обработки - перфокарты ручной и машинной сортировки;

по целевому назначению перфорированные документы могут быть разделены на учетные, справочные, библиографические, информационные, диагностические, учебные.

Перфорационная карта, перфокарта - это перфорированный носитель информации в виде прямоугольной карточки из тонкого картона, плотной бумаги или пластмассы, предназначенной для записи информации путем пробивки отверстий (перфораций) или вырезки ее соответствующих участков.

Перфокарты применяются, в основном, для ввода и вывода данных в ЭВМ, а также в качестве основного носителя записи в перфорационных вычислительных комплексах. Существует большое число видов перфокарт, различающихся формой, размерами, объемом хранимой информации, формой и расположением отверстий.

Перфорационная лента, перфолента - носитель информации в виде ленты (бумажной, целлулоидной или лавсановой), на которую данные наносятся определенной последовательностью кодовых комбинаций отверстий. Каждая кодовая комбинация кодирует один знак и размещается на ленте перпендикулярно направлению ее движения.

Перфоленту можно использовать:

·при передаче или приеме телеграфных депеш;

·при работе на вычислительных машинах и другой организующей технике (пишущей, суммирующей, бухгалтерской, и т.д.), на специальных дешифраторах или в выходном устройстве ЭВМ;

·как запись информации научного и технического характера и т.д. на различных машинах и приспособлениях.

В XIX веке, в связи с изобретением технотронных способов и средств документирования, широкое распространение получили многие принципиально новые носители информации. Исторически первыми из них были фотографические носители, появившиеся в первой половине XIX века. Фотоматериалы представляют собой гибкие пленки, пластинки, бумаги, ткани. По существу это - сложные полимерные системы, состоящие, как правило, из следующих слоев: подложка (основа) толщиной около 0,06 мм (в случае, если используется полиэтилентерефталат), на которую наносится подслой (толщиной примерно 1 мкм), а также светочувствительный эмульсионный слой - желатина с равномерно распределенными в ней микрокристаллами галогенида серебра (на цветных фотопленках до 0,05 мм, на фотобумагах - до 0,012 мм) и противоореольный слой.

Цветные фотографические носители имеют более сложное строение, поскольку содержат также сине-, желто-, зелено-, красночувствительные слои. Впервые трехслойные цветные фотоматериалы были разработаны и выпущены в 1935 г. американской фирмой «Истмен Кодак». В дальнейшем совершенствование многослойных цветных материалов продолжалось. Важное значение имели разработки 1950-х гг., явившиеся одним из качественных скачков в истории фотографии, предопределив быстрое развитие и широкое распространение цветной фотографии.

В последние годы появились новые научные идеи, создающие основу для значительного роста светочувствительности материалов и доведения ее до светочувствительности человеческого глаза.

Помимо светочувствительности, важнейшими характеристиками фотографических материалов, в частности фотопленок, являются также зернистость, контрастность, цветочувствительность.

До недавних пор в научных и репродуктивных целях использовались также фотопластинки, где рабочий слой наносился на прозрачную стеклянную основу, которая не деформируется при химико-фотографической обработке и обеспечивает точную передачу изображения в позитиве.

Кинопленка является фотографическим материалом на гибкой прозрачной подложке, имеющей с одной или обоих краев отверстия - перфорации. Исторически первые светочувствительные ленточные носители были на бумажной основе. Использовавшаяся на первых порах нитратцеллюлозная лента представляла собой очень горючий материал. Однако уже в 1897 г. немецким ученым Вебером была изготовлена пленка с негорючей основой из триацетата целлюлозы, получившая широкое распространение, в том числе в отечественной киноиндустрии. Впоследствии подложка стала изготовляться из полиэтилентерефлата и других эластичных полимерных материалов. В нашей стране первые образцы кинопленки были изготовлены в 1919 г., а с 1930 г. началось ее промышленное производство.

По сравнении. с фотопленкой кинопленка обычно состоит из большого количества слоев. На подложку наносится подслой, который служит для закрепления светочувствительного слоя (или нескольких слоев) на основе. Кроме того, кинопленка обычно имеет противоореольный, противоскручивающий, а также защитный слой.

Кинопленки бывают черно-белые и цветные. Цветные кинопленки также представляют собой многокомпонентные полимерные системы.

Кинопленки делятся на:

·негативные;

·позитивные (для контактного и проекционного печатания);

·обращаемые (могут использоваться для получения негативов и позитивов);

·контратипные (для копирования, например, для массового изготовления фильмокопий);

·гидротипные;

·фонограммные (для фотографической записи звука).

Черно-белая фотографическая пленка шириной 16 и 35 мм выступает в качестве наиболее распространенного носителя для изготовления микрофильмов. Микрофильм представляет собой микроформу на рулонной светочувствительной пленке с последовательным расположением кадров в один или два ряда. Основными типами микрофильмов являются микрофильмы рулонные и в отрезке. Микрофильмы в отрезке - это часть рулонной пленки длинной не менее 230 мм, на которой размещается до нескольких десятков кадров.

К числу документов на микроформах относятся также микрокарты, микрофиши и ультрамикрофиши, являющиеся фактически плоскими форматными микрофильмами:

·микрокарта - документ в виде микроформы на непрозрачном форматном материале, полученный копированием на фотобумагу или микроофсетной печатью;

·микрофиша - лист прозрачной фотопленки формата 105*148 мм с последовательным расположением кадров в несколько рядов;

·ультрамикрофиша - микрофиша, содержащая копии изображений предметов с уменьшением более чем в 90 раз. К примеру, емкость ультрамикрофиши размером 75*125 мм составляет 936 страниц книжного формата.

Несмотря на широкое распространение в последние десятилетия цифрового фото- и видеодокументирования, традиционные фотографические носители продолжают сохранять свою нишу на отечественном и зарубежном рынке материальных носителей информации, обеспечивая высокое качество при сравнительно низкой цене.

В массиве документов особое место занимают носители информации, содержащие одно или несколько микроизображений, получившие общее название микрографических документов или микроформ.

Микрографический документ выполняется на микроносителе микрокопии или оригинала документа. Этот класс документов составляют микрофильмы микрофиши и микрокарты.

Микрографические документы или микроформы производятся в компактной форме на фото -, кино -, магнитоленте или оптическом диске. Их отличительными особенностями являются малые физические размеры и вес, значительная информационная емкость, компактность хранения информации, необходимость специальной аппаратуры для ее считывания. Прогнозируемый срок службы микроформ - 500 и более лет.

Микрофильм - уменьшенная копия документа, полученная фотографическим способом. Он содержит одно или несколько текстовых и графических микроизображений, объединённых общностью содержания.

Микрофиша - плоская микроформа с расположением микроизображений в форме сетки. Микрофиша представляет собой отрезок фото -, диазо- или везикулярной плёнки стандартного формата, на которой в заданной последовательности располагается микроизображение. Читать микрофишу можно на читальном аппарате при помощи диапроектора.

Микрокарта - носитель информации на фотопленке, вставляемый в апертурную или кляссерную карту. Это документ изготовленный на непрозрачной основе (на отрезке фотографической или обычной бумаги, а также на металлической основе). Читают микрокарту на читальных аппаратах при помощи эпипроектора (т.е. в отраженном свете). В микрокарте можно использовать и лицевую, и оборотную стороны, разместив на одной стороне поисковый образ документа, библиографическое описание, аннотацию или реферат документа, а на другой - микроизображение всего документа.

Один из самых современных и перспективных носителей информации - твердотельная флэш-память, представляющая собой микросхему на кремниевом кристалле. Это особый вид энергонезависимой перезаписываемой полупроводниковой памяти. Название связано с огромной скоростью стирания микросхемы флэш-памяти.

Для хранения информации флэш-носители не требуют дополнительной энергии, которая необходима только для записи. Причем по сравнению с жесткими дисками и носителями CD - ROM для записи информации на флэш-носителях требуется в десятки раз меньше энергии, поскольку не нужно приводить в действие механические устройства, как раз и потребляющие большую часть энергии. Сохранение электрического заряда в ячейках флэш-памяти при отсутствии электрического питания обеспечивается с помощью так называемого плавающего затвора транзистора.

Носители на базе флэш-памяти могут хранит записанную информацию очень длительное время (от 20 до100 лет). Будучи упакованы в прочный жесткий пластиковый корпус, микросхемы флэш-памяти способны выдерживать значительные механические нагрузки (в 5-10 раз превышающие предельно допустимые для обычных жестких дисков). Надежность такого рода носителей обусловлена и тем, что они не содержат механически движущихся частей. В отличие от магнитных, оптических и магнитооптических носителей, здесь не требуется применение дисководов с использованием сложной прецизионной механики. Их отличает также бесшумная работа.

Кроме того, эти носители очень компактны. Уже первые карты CompactFlash (CF) имели размеры 43*36*3,3 мм. А вскоре появились один из самых маленьких устройств хранения информации - MultiMediaCard величиной всего лишь с почтовую марку и весом менее двух граммов.

Информацию на флэш-носителях можно изменять, т.е. перезаписывать. Помимо носителей с единственным циклом записи, существует флэш-память с количеством допустимых циклов записи / стирания до 10000, а также от 10000 до 1000000 циклов. Все эти типы принципиально не отличаются друг о друга. Отличия имеются лишь в архитектуре.

Несмотря на миниатюрные размеры, флэш-карты обладают большой емкостью памяти, составляющей многие сотни Мбайт. Они универсальны по своему применению, позволяя записывать и хранить любую цифровую информацию, в том числе музыкальную, видео- и фотографическую.

Флэш-память исторически происходит от полупроводникового ROM (Read Only Memory) (или ПЗУ - постоянно запоминающее устройство). Технология флэш-памяти появилась около 20 лет назад, а промышленное производство началось с середины 1990-х гг. В 1997 г. флэш-карты впервые стали применяться в цифровых фотокамерах. Практически сразу же они вошли в разряд основных носителей информации, широкоиспользуемых в самых разных цифровых мультимидийных устройствах - в портативных компьютерах, в принтерах, цифровых диктофонах, сотовых телефонах, электронных часах, записных книжках, телевизорах, кондиционерах, микроволновых печах, стиральных машинах, МР3 - плеерах, игровых приставках, в цифровых фото- и видеокамерах и т.д.

Флэш-карты являются одним из наиболее перспективных видов материальных носителей информации. Уже разработаны карты нового поколения - Secure Digital, обладающие криптографическими возможностями защиты информации и высокопрочным корпусом, существенно снижающим риск повреждения носителя статическим электричеством.

Выпущены кары емкостью 4 Гбайт. На них можно поместить около 4000 снимков высокого разрешения, или 1000 песен в формате МР3, или же полный DVD - фильм. Тем временем уже разработана флэш-карта емкостью 8 Гбайт.

Налажено производство так называемых неподвижных флэш-дисков (в действительности они имеют отличающуюся от диска форму) емкостью в сотни Мбайт, тоже представляющих собой мобильные устройства для хранения и транспортировки информации. К примеру, флэш-диск Canyon Flash Drive имеет размеры 63*15*8,1 мм, а вес всего лишь 8г. Эти носители легко подключаются к компьютеру.

Таким образом, совершенствование технологии флэш-памяти идет в направлении увеличения емкости, надежности, компактности, многофункциональности носителей, а также снижения их стоимости.

Объемное изображение информации в настоящее время записывается на голографических носителях. Для голографической съемки используются специальные пластинки или пленки. Они позволяют уплотнить информацию на материальном носителе. Так, на одной голограмме размером 101*126 мм можно разместить более тысячи микроголограмм диаметром всего лишь 102 мм, что соответствует нескольким тысячам страниц текста.

Качество голографического изображения зависит от разрешающей способности фотографического материала и определяется числом интерференционных линий, фиксируемых на 1 мм. Дело в том, что длина световой волны очень мала, следовательно, расстояние между интерференционными максимумами тоже невелико и достигает всего лишь 1 мкм. Отсюда, чем больше число интерференционных линий, тем выше качество изображения. Поэтому для фиксации информации в голографии используются мелкозернистые фотоэмульсии, обладающие высоким разрешением (1000 линий на 1 мм и более).

В настоящее время ведутся поиски беззернистых фотоматериалов, способных записывать непрерывное распределение яркости интерференционной картины, в отличие от дискретного, которое дат зернистые фотографические эмульсии, представляющие собой взвесь светочувствительных зерен.


. Влияние типа носителя информации на долговечность, стоимость и емкость документа


Передача информации во времени и пространстве непосредственно связана с характеристиками ее материального носителя. Не случайно проблема долговечности материальных носителей информации во все времена привлекала внимание участников процесса документирования. Уже в древности наблюдается стремление зафиксировать наиболее важную информацию на долговечных материалах, как камень, металл.

В процессе фиксирования информации наблюдалось стремление использовать качественные краски, стойкие чернила. Во многом благодаря этому до нас дошли многие важные текстовые исторические памятники. И, наоборот, использование недолговечных материальных носителей привели к безвозвратной утрате большинства документов далекого прошлого.

Однако, решая проблему долговечности, практически сразу же появилась проблема, заключавшаяся в том, что долговечные носители информации были, как правило, более дорогостоящими. Поэтому постоянно приходилось искать оптимальное соотношение между долговечностью материального носителя информации и его стоимостью. Эта проблема до сих пор остается весьма важной и актуальной.

Наиболее распространенный в настоящее время материальный носитель информации - бумага. Она обладает относительной дешевизной, доступностью. Однако в то же время бумага является очень недолговечным материалом, который может подвергаться различным воздействиям.

До середины 19 века бумага изготавливалась из тряпичного сырья, содержала длинноволокнистый материал с большим содержанием чистой клетчатки, обеспечивавшей ей высокую механическую прочность и долговечность. В середине 19 столетия, по мнению специалистов, наступил первый кризисный период в истории бумажного документа. Он был связан с переходом к изготовлению бумаги из древесины, с применением химических процессов обработки волокна, с использованием синтетических красителей, с широким распространением машинописи и средств копирования.

В результате долговечность бумажного документа сократилась с тысяч до двухсот - трехсот лет. Особенно недолговечны документы, изготовленные на бумаге низких по качеству видов и сортов.

Таким образом, обнаружилась определенная закономерность: усовершенствование технологии бумажного производства сопровождается снижением долговечности выпускаемых видов бумаги. Между прочим, ни один вид бумаги не смог превзойти долговечность папируса. Возраст папирусных свитков, хранящихся в настоящее время в библиотеках, музеях ряда стран, составляет несколько тысячелетий.

В конце 20 века с развитием компьютерных технологий и использованием принтеров для вывода информации на бумажный носитель вновь возникла проблема долговечности бумажных документов. Она обусловлена такими факторами как химическая стабильность краски, водостойкость, стойкость к физико-механическим воздействиям, вызывающим стирание, осыпание и другие дефекты.

Следования показали, что для длительного хранения наиболее пригодны документы, создаваемые с помощью матричных принтеров. Достаточно водостойкими и светостойкими являются распечатки лазерных принтеров, а также ксерокопированных аппаратов. Они аналогичны черной машинописи, которая являлась довольно надежным средством текстонанесения. Струйная принтерная печать, особенно цветная, дает водорасворимые и выцветающие тексты.

Не только принтерные струйные тексты являются недостаточно стойкими к воздействиям внешней среды. То же самое можно сказать и о многих современных рукописных текстах, которые лучше растворимы в воде и менее светостойки, чем традиционные.

В СССР даже была создана правительственная программа, предусматривавшая разработку и выпуск отечественных долговечных бумаг для документов, специальных стабильных средств письма и копирования, а также ограничение с помощью нормативов применения недолговечных материалов для создания документов. В соответствии с этой программой к 1990-м гг. были разработаны и стали выпускаться специальные долговечные бумаги для делопроизводства. Однако в дальнейшем эта программа не получила своего развития.

Проблема долговечности и экономической эффективности материальных носителей информации особенно остро встала с появлением технотронных (аудиовизуальных и машиночитаемых) документов, также подверженных старению и требующих особых условий хранения. Причем процесс старения таких документов является многосторонним и существенно отличается от старения традиционных носителей информации.

Во-первых, аудиовизуальные и машиночитаемые документы, равно как и документы на традиционных носителях, подвержены физическому старению, связанному со старением материального носителя. Так, старение фотоматериалов проявляется в изменении свойств их светочувствительности и контрастности при хранении. У цветных фотоматериалов происходит выцветание, проявляющееся в виде искажения цветов и снижения их насыщенности.

Уже с момента изготовления кино- и фотопленки начинается процесс их старения. Вместе с тем пленочный носитель является сравнительно долговечным материалом.

Срок службы граммофонных пластинок определяется их механическим износом, зависит от интенсивности использования, условий хранения.

Для магнитных носителей характерна высокая чувствительность к внешним электромагнитным воздействиям. Они также подвержены физическому старению, изнашиванию поверхности с нанесенным магнитным рабочим слоем. Ферромагнитный слой лент подвержен коррозии. Магнитная лента со временем растягивается, в результате чего искажается записанная на ней информация. Это связано с физическим износом ленты в результате ее соприкосновения с магнитной головкой в процессе считывания информации. Постепенно снижается намагниченность ленты, что приводит к сбоям. В результате гарантированный срок хранения информации на магнитной ленте составляет всего лишь 30 - 40 лет. То же самое происходит и с дискетами. Более долговечными являются жесткие диски, ресурс которых составляет примерно 28 лет. Однако накопители на жестких дисках представляют собой электромеханические устройства, а значит, чаще подвержены поломкам.

Наиболее надежными и долговечными на сегодняшний день являются оптические носители информации - СД-РОМ, СД-Р, ДВД. Срок их службы определяется не механическим износом, как у магнитных носителей, а химико-физической стабильностью среды, в которой они находятся. В отличие от магнитных дисков, оптические диски полностью независимы от внешних магнитных полей. Вместе с тем они также нуждаются в оптимальном режиме хранения. Оптическим дискам противопоказаны механические повреждения. Любая деформация делает невозможным считывание информации. При оптимальных условиях хранения продолжительность жизни компакт-дисков может составить 100 лет.

В отличие от традиционных текстовых и графических документов, аудиовизуальные и машиночитаемые документы подвержены техническому старению, связанному с уровнем развития оборудования для считывания информации. Быстрое развитие техники приводит к тому, что возникают проблемы для воспроизведения ранее записанной информации.

Внедрение в повседневность электронного документирования привело к тому, что техническое старение дополнилось так называемым логическим старением, которое связано с содержанием информации, программным обеспечением и стандартами сохранности информации.

Техническое и логическое старение приводит к тому, что значительная масса информации на электронных носителях безвозвратно утрачивается.

В настоящее время продолжается поиск информационно емких и одновременно достаточно стабильных и экономических носителей. На одной из научных конференций, состоявшейся в США, был продемонстрирован изготовленный из никеля «вечный диск» Rosetta. Он позволяет сохранять в аналоговом виде до 350000 страниц текста и рисунков в течение нескольких тысяч лет.

Активно ведутся работы по созданию компактных носителей информации с использованием нанотехнологий, работающих с атомами и молекулами. Плотность упаковки элементов, собранных из атомов, в тысячи раз больше, чем в современной микроэлектронике. В результате один компакт-диск, изготовленный по такой технологии, может заменить тысячи лазерных дисков.

Стремительное развитие новейших информационных технологий приводит, таким образом, к созданию все новых, более информационно емких, надежных и доступных по цене носителей информации.


Заключение


Цель курсового исследования достигнута путём реализации поставленных задач.

В результате проведённого исследования по теме «Современные материальные носители документированной документации» можно сделать ряд выводов:

Глобальная информатизация общества, широкое распространение новых информационных и коммуникационных технологий, постепенное внедрение рыночных механизмов и современного менеджмента привели к усилению роли информации в социально-экономических процессах и осознанию ее как важнейшего стратегического ресурса.

Согласно российскому законодательству, в информационные ресурсы включаются документированная информация и информационные технологии, т.е. предмет и средства информационной деятельности.

Документирование информации - обязательное условие для ее включения в информационные ресурсы - осуществляется в порядке, устанавливаемом органами государственной власти, ответственными за организацию делопроизводства, стандартизацию документов и их массивов, безопасность Российской Федерации.

При помощи документирования информация приобретает необходимые свойства и в виде документов выполняет свою основную роль в процессах управления, передавая управленческие воздействия от объекта субъекту управления и сигнализируя об обратной реакции.

В результате документирования информация закрепляется (фиксируется) на носителе, приобретает юридическую силу, возможность идентификации, доказательства ее подлинности. Таким образом, основной формой организации информации в управлении является документ.

Существует три основных сущностных подхода к формулированию понятия документа: как материального объекта; как носителя информации; как документированной информации. В течение, длительного времени главенство в термине принадлежало носителю.

Современное понимание документа выводит на передний план информационную составляющую документа и ее правовое обеспечение, позволяющее осуществить идентификацию документа в процессе его функционирования. Включение в понимание документа правовой составляющей позволяет реализовать концепцию управления документацией на всех стадиях ее жизненного цикла.

Для управленческого документа существенным является носитель информации. Носители документной информации изменяются в ходе технического прогресса. С развитием новых информационных технологий появляются так называемые электронные документы, носители информации которых принципиально отличаются от «бумажных».

Человек способен воспринимать электронный документ только с помощью специальных технологических процедур и программных средств. Электронные документы имеют физическую и логическую структуру, не совпадающую с прежними представлениями о документе как жесткой, неизменяемой конструкции информации и ее носителя.

Под материальной составляющей документа имеют в виду:

·материальную основу документа;

·форму носителя информации;

·способ документирования или записи информации.

Носители информации самым тесным образом связаны не только со способами и средствами документирования, но и с развитием технической мысли. Отсюда - непрерывная эволюция типов и видов материальных носителей.

Развитие материальных носителей документированной информации в целом идёт по пути непрерывного поиска объектов с высокой долговечностью, большой информационной ёмкостью при минимальных физических размерах носителя.

Список источников

информация носитель материальный электронный

1.Бардаев Э.А. Документоведение: учебник для студентов высших учебных заведений / Э.А. Бардаев, В.Д. Кравченко. - М.: Издательский центр «Академия», 2008. - 304 с.

2.Ларьков, Н.С. Документоведение: учебное пособие / Н.С. Ларьков. - М.: АСТ: Восток - Запад, 2006. - 427 с.

3.Стенюков М.В. Документоведение и делопроизводство (конспект лекций). - М.: А - Приор, 2007. - 176 с. «Перечисление современных носителей информации».

.Гутгарц Р.Д. Документирование управленческой деятельности: Курс лекций. - М.: ИНФРА - М, 2001. - 185 с. - (Серия «Высшее образование»).

.Басаков М.И. Делопроизводство; конспект лекций / М.И. Басаков. - Изд. 7-е, испр. и доп. - Ростов н/Д: Феникс, 2009. - 192 с.

.Румынина Л.А. Документационное обеспечение управления: для студентов учреждений среднего проффесионального образования / Л.А. Румынина. - 6. - е изд., стер - М.: Издательский центр «Академия», 2008. - 224 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Электронные носители информации

Технология записи информации на магнитные носители появилась сравнительно недавно - примерно в середине 20-го века (40-ые - 50-ые годы). Но уже несколько десятилетий спустя - в 60-ые - 70-ые годы - это технология стала очень распространённой во всём мире.

Магнитная лента состоит из полоски плотного вещества, на которую напыляется слой ферромагнетиков. Именно на этот слой "запоминается" информация. Процесс записи также похож на процесс записи на виниловые пластинки - при помощи магнитной индукционной катушки вместо специального аппарата на головку подаётся ток, который приводит в действие магнит. Запись звука на плёнку происходит благодаря действию электромагнита на плёнку. Магнитное поле магнита меняется в такт со звуковыми колебаниями, и благодаря этому маленькие магнитные частички (домены) начинают менять своё местоположение на поверхности плёнки в определённом порядке, в зависимости от воздействия на них магнитного поля, создаваемого электромагнитом. А при воспроизведении записи наблюдается процесс обратный записи: намагниченная лента возбуждает в магнитной головке электрические сигналы, которые после усиления поступают дальше в динамик.

Компамкт-кассемта (аудиокассемта или просто кассемта) -- носитель информации на магнитной ленте, во второй половине XX века -- распространённый медианоситель для звукозаписи. Применялся для записи цифровой и аудиоинформации. Впервые компакт-кассета была представлена в 1964 году компанией Philips. По причине своей относительной дешевизны долгое время (с начала 1970-х по 1990-е годы) компакт-кассета была самым популярным записываемым аудионосителем, однако, начиная с 1990-х годов,

была вытеснена компакт-дисками.

Сейчас в мире присутствует множество различных типов магнитных носителей: дискеты для компьютеров, аудио- и видеокассеты, бобинные ленты и.т.д. Но постепенно открываются новые законы физики, и вместе с ними - новые возможности записи информации. Всего пару десятков лет назад появилось множество носителей информации, базирующихся на новой технологии - считывания информации при помощи линз и лазерного луча.

Развитие материальных носителей документированной информации в целом идёт по пути непрерывного поиска объектов с высокой долговечностью, большой информационной ёмкостью при минимальных физических размерах носителя. Начиная с 1980-х годов, всё более широкое распространение получают оптические (лазерные) диски. Это пластиковые или алюминиевые диски, предназначенные для записи и воспроизведения информации при помощи лазерного луча.

По технологии применения оптические, магнитооптические и цифровые компакт-диски делятся на 3 основных класса:

1. Диски, допускающие однократную запись и многократное воспроизведение сигналов без возможности их стирания (CD-R; CD-WORM - Write-Once, Read-Many - один раз записал, много раз считал). Используются в электронных архивах и банках данных, во внешних накопителях ЭВМ.

2. Реверсивные оптические диски, позволяющие многократно записывать, воспроизводить и стирать сигналы (CD-RW, CD-E). Это наиболее универсальные диски, способные заменить магнитные носители практически во всех областях применения.

3. Цифровые универсальные видеодиски DVD (Digital Versatile Disk) типа DVD-ROM, DVD-RAM, DVD-R с большой ёмкостью (до 17 Гбайт).

Название оптических дисков определяется методом записи и считывания информации. Информация на дорожке создается мощным лазерным лучом, выжигающим на зеркальной поверхности диска впадины, и представляет собой чередование впадин и отражающих участков. При считывании информации зеркальные островки отражают свет лазерного луча и воспринимаются как единица (1), впадины не отражают луч и соответственно воспринимаются как ноль (0). Этот принцип позволяет достичь высокой плотности записи информации, а следовательно и большой емкости при минимальных размерах. Компакт-диск является идеальным средством хранения информации - дешев до смешного, практически не подвержен каким-либо влияниям среды, информация записанная на нем не исказится и не сотрется, пока диск не будет уничтожен физически, имеет ёмкость 700 Мбайт.

Магнитооптический диск -- носитель информации, сочетающий свойства оптических и магнитных накопителей. Диск изготовлен с использованием ферромагнетиков. Магнитооптические диски при всех своих достоинствах имеют серьёзные недостатки: относительно низкую скорость записи, вызванную необходимостью перед записью стирать содержимое диска, а после записи--проверкой на чтение; высокое энергопотребление - для разогрева поверхности требуются лазеры значительной мощности, а следовательно и высокого энергопотребления. Это затрудняет использование пишущих МО приводов в мобильных устройствах.

DVD (ди-ви-дим, англ. Digital Versatile Disc -- цифровой многоцелевой диск) -- носитель информации в виде диска, внешне схожий с компакт-диском, однако имеющий возможность хранить бомльший объём информации за счёт использования лазера с меньшей длиной волны, чем для обычных компакт дисков. Первые диски и проигрыватели DVD появились в ноябре 1996 в Японии и в марте 1997 в США. Они предназначались для записи и хранения видеоизображений. Интересно, что первые DVD-"болванки" объёмом 3,95 Гб стоили тогда 50$ за штуку. В настоящее время существует шесть разновидностей подобных дисков ёмкостью от 4,7 до 17,1 Гб. Они используются для записи и хранения любой информации: видео, аудио, данных.

Работа с информацией в наше время не мыслима без компьютера, так как он изначально создавался как средство обработки информации и только теперь он стал выполнять множество других функций: хранение, преобразование, создание и обмен информацией. Но прежде чем принять привычную сейчас форму компьютер претерпел три революции.

Первая компьютерная революция свершилась в конце

50-х годов; ее суть можно описать двумя словами: компьютеры появились.

Изобретены они были не менее чем за десять лет до этого, но именно в то время начали выпускаться серийные машины, эти машины перестали быть объектом исследований для ученых и диковинкой для всех остальных. Через полтора десятилетия после этого ни одна крупная организация не могла себе позволить обходиться без вычислительного центра. Если тогда заходила речь о компьютере, сразу же представлялись заполненные стойками машинные залы, в которых напряженно думают люди в белых халатах. И тут свершилась вторая революция. Практически одновременно несколько фирм обнаружили, что развитие техники достигло такого уровня, когда вокруг компьютера не обязательно воздвигать вычислительный центр, а сам он стал небольшим. Это были первые мини-ЭВМ. Но прошло еще десять с небольшим лет, и наступила третья революция - в конце 70-х возникли персональные компьютеры. За короткое время, пройдя путь от настольного калькулятора до полноценной небольшой машины, ПК заняли свои места на рабочих столах индивидуальных пользователей.

В тот самый момент, когда первый компьютер впервые обработал несколько байт данных моментально встал вопрос: где и как хранить полученные результаты? Как сохранять результаты вычислений, текстовые и графические образы, произвольные наборы данных?

Прежде всего, должно быть устройство с помощью которого компьютер будет запоминать информацию, затем требуется носитель информации, на котором ее можно будет переносить с места на место, причем другой компьютер должен также легко прочитать эту информацию. Рассмотрим некоторые из этих устройств.

1. Устройство чтения перфокарт: предназначено для хранения программ и наборов данных с помощью перфокарт - картонных карточек с пробитыми в определенной последовательности отверстиями. Перфокарты были изобретены задолго до появления компьютера, с их помощью на ткацких станках получали очень сложные и красивые ткани, потому что они управляли работой механизма. Изменишь набор перфокарт и рисунок ткани будет совсем другим - это зависит от расположения отверстий на карте. Применительно к компьютерам был использован тот же принцип, только вместо рисунка ткани отверстия задавали команды компьютеру или наборы данных. Такой способ хранения информации не лишен недостатков: - очень низкая скорость доступа к информации; - большой объем перфокарт для хранения небольшого количества информации; - низкая надежность хранения информации; - к тому же от перфоратора постоянно летели маленькие кружочки картона, которые попадали на руки, в карманы, застревали в волосах и уборщицы были страшно недовольны. Перфокартами люди были вынуждены пользоваться не потому что этот способ как-то особенно нравился им, или он имел какие-то неоспоримые достоинства, вовсе нет, он вообще не имел достоинств, просто в то время ничего другого еще не было, выбирать было не из чего, приходилось выкручиваться.

2. Накопитель на магнитной ленте (стриммер): основан на использовании устройства магнитофонного типа, и кассет с магнитной пленкой. Этот способ накопления информации известен давно и успешно применяется и сегодня. Это объясняется тем, что на небольшой кассете помещается довольно большой объем информации, информация может храниться продолжительное время и скорость доступа к ней гораздо выше, чем у устройства чтения перфокарт. С другой стороны стриммер пригоден только для накопления, хранения больших массивов информации, резервирования данных. Обрабатывать информацию с помощью стриммера практически невозможно: стример - устройство последовательного доступа к данным: чтобы получить 5-й файл мы должны промотать четыре. А если нужен 7529-й?

3. Накопитель на гибких магнитных дисках (НГМД - дисковод). Это устройство использует в качестве носителя информации гибкие магнитные диски - дискеты, которые могут быть 5-ти или 3-х дюймовыми. Дискета - это магнитный диск вроде пластинки, помещенный в картонный конверт. В зависимости от размера дискеты изменяется ее емкость в байтах. Если на стандартную дискету размером 5"25 дюйма помещается до 720 Кбайт информации, то на дискету 3"5 дюйма уже 1,44 Мбайта. Дискеты универсальны, подходят на любой компьютер того же класса оснащенный дисководом, могут служить для хранения, накопления, распространения и обработки информации. Дисковод - устройство параллельного доступа, поэтому все файлы одинаково легко доступны. К недостаткам относятся маленькая емкость, что делает практически невозможным долгосрочное хранение больших объемов информации, и не очень высокая надежность самих дискет.

4. Накопитель на жестком магнитном диске (НЖМД - винчестер): является логическим продолжением развития технологии магнитного хранения информации. Имеют очень важные достоинства: - чрезвычайно большая емкость; - простота и надежность использования; - возможность обращаться к тысячам файлов одновременно; - высокая скорость доступа к данным.

5. Уже рассмотренные нами CD и DVD-диски.

Но так как потоки информации только увеличиваются то для ее создания, обработки, хранения и передачи необходимо разрабатывать все новые и новые средства и приспособления.

Мы уже рассматривали выше хранение данных на CD и DVD-дисках. Несмотря на их удобство, в связи с необходимостью использования максимально большого объема информации, уже начинается процесс их вытеснения. В ближайшие годы в таких устройствах персональной вычислительной техники, как компьютер, флэш-память будет грозным соперником жёстких дисков.

6. Флеш-память (англ. Flash-Memory) -- разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.

Благодаря своей компактности, дешевизне и низкой потребности в электроэнергии флеш-память уже широко используется в портативных устройствах, работающих на батарейках и аккумуляторах -- цифровых фотокамерах и видеокамерах, цифровых диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах. Кроме того, она используется для хранения встроенного программного обеспечения в различных периферийных устройствах (маршрутизаторах, мини-АТС, коммуникаторах, принтерах, сканерах). Не содержит подвижных частей, так что, в отличие от жёстких дисков, более надёжна и компактна.

Основное слабое место флеш-памяти -- количество циклов перезаписи. Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч раз). Несмотря на то, что такое ограничение есть, 10 тысяч циклов перезаписи -- это намного больше, чем способна выдержать дискета или компакт-диск. Флеш-память наиболее известна применением в USB флеш-носителях (англ. USB flash drive). Благодаря большой скорости, объёму и компактным размерам USB флеш-носители уже вытесняют с рынка компакт-диски.

Посмотрело: 13446

0

Накопление знаний - основа основ любой цивилизации. Но человеческая память несовершенна и неспособна вместить все знания и опыт, которые переходят из поколения в поколение. Поэтому с древнейших времен люди использовали самые разнообразные носители информации, от камня и шкур животных до высококачественной бумаги. При этом, несмотря на совершенствование типов носителей, сам принцип записи и структура данных за несколько тысячелетий практически не изменились.

Качественный скачок произошел только тогда, когда человеку потребовалось научить машину понимать записанную информацию.

Более двухсот лет назад, в 1808 году, французский изобретатель Жозеф Мари Жаккар создал станок для производства тканей со сложным узором. Уникальность этого устройства заключалась в том, что была фактически спроектирована и построена первая программно управляемая машина. Последовательность действий станка при создании какого-либо узора записывалась на специальных картонных перфокартах в виде пробитых в определенном порядке дырочек.

Вряд ли Жаккар представлял, насколько блестящее будущее уготовано его изобретению. Не станку, а принципу записи информации в виде двоичного кода, который стал основой азбуки всех компьютеров.

Позже идеи Жаккара использовались в автоматических телеграфах, где последовательность сигналов азбуки Морзе записывалась на перфолентах, в аналитической машине Чарльза Беббиджа, ставшей прообразом современных компьютеров, в статистическом табуляторе Германа Холлерита и, конечно, в первых ЭВМ двадцатого века. Благодаря своей простоте различные варианты перфокарт и перфолент получили широчайшее распространение в компьютерной технике и программно управляемых станках. Подобные носители информации использовались вплоть до середины 80-х, когда их окончательно вытеснили магнитные носители.

Перфокарты и перфоленты

Годы жизни: 1808–1988

Объем памяти: до 100 Кб

Простота изготовления, возможность использования в самых низкотехнологичных устройствах

– Малая плотность записи, низкая скорость чтения/записи, невысокая надежность, невозможность перезаписи информации



ПРИРОДНЫЙ МАГНЕТИЗМ

Перфокарты и перфоленты, при всех своих преимуществах и богатой истории, обладали двумя фатальными недостатками. Первый - очень низкая информационная емкость. На стандартной перфокарте помещалось всего 80 символов или около 100 байт, для хранения одного мегабайта информации понадобилось бы больше десяти тысяч перфокарт. Второй - низкая скорость считывания: устройство ввода могло проглатывать максимум 1000 перфокарт в минуту, то есть всего 1,6 килобайта в секунду. Третий - невозможность перезаписи. Одна лишня дырка - и носитель информации приходит в негодность, как и вся находящаяся на нем информация.

В середине XX века был предложен новый принцип хранения информации, основанный на явлении остаточного намагничивания некоторых материалов. Вкратце принцип действия следующий: поверхность носителя изготавливается из ферромагнетика, после воздействия на который магнитным полем на материале сохраняется остаточная намагниченность вещества. Ее-то впоследствии и регистрируют считывающие устройства.

Первыми ласточками данной технологии стали магнитные карты, по размерам и функциям совпадавшие с обычными перфокартами. Впрочем, широкого распространения они не получили и были вскоре вытеснены более вместительными и надежными накопителями на магнитных лентах.

Эти запоминающие устройства активно использовались в мейнфреймах с 50-х годов. Изначально они представляли собой огромные шкафы с лентопротяжным механизмом и катушками с лентой, на которую и производилась запись информации. Несмотря на более чем солидный возраст, технология не умерла и используется по сей день в виде стримеров. Это запоминающие устройства, выполненные в виде компактного картриджа с магнитной лентой, предназначенные для резервного копирования информации. Залог их успеха - большая вместимость, до 4 Тб! Но для любых других задач они практически непригодны из-за крайне низкой скорости доступа к данным. Причина в том, что вся информация записывается на магнитную ленту, следовательно, чтобы получить доступ к какому-либо файлу, необходимо перемотать пленку до нужного участка.

Принципиально иной подход к записи данных используется в дискетах. Это портативное запоминающее устройство, представляющий собой диск, покрытый ферромагнитным слоем и заключенный в пластиковый картридж. Дискеты появились как ответ на потребность пользователей в карманных носителях информации. Впрочем, слово «карманный» для ранних образцов не совсем подходит. Существует несколько форматов дискет в зависимости от диаметра магнитного диска внутри. Первые дискеты, появившиеся в 1971 году, были 8-дюймовыми, то есть с диаметром диска в 203 мм. Так что положить их можно было разве что в папку для бумаг. Объем записываемой информации составлял целых 80 килобайт. Впрочем, уже через два года этот показатель увеличился до 256 килобайт, а к 1975-му - до 1000 Кб! Пришло время сменить формат, и в 1976 году появились 5-тидюймовые (133 мм) дискеты. Их объем изначально составлял всего 110 Кб. Но технологии совершенствовались, и уже в 1984 году появились дискеты «высокой плотности записи» объемом 1,2 Мб. Это была «лебединая песня» формата. В том же 1984 году появились 3,5-дюймовые дискеты, которые уже можно по праву назвать карманными. По легенде, размер в 3,5 дюйма (88 мм) был выбран по принципу помещаемости дискеты в нагрудный карман рубашки. Объем этого носителя изначально составлял 720 Кб, но быстро подрос до классического 1,44 Мб. Позже, в 1991 году, появились 3,5-дюймовые дискеты Extended Density расширенной плотности, вмещавшие 2,88 Мб. Но они широкого распространения не получили, т. к. для работы с ними требовался специальный привод.

Дальнейшим развитием данной технологии стал знаменитый (кое-где печально знаменитый) Zip. В 1994 году компания Iomega выпустила на рынок накопитель рекордной по тем временам емкости - 100 Мб. Принцип действия Iomega Zip тот же, что и у обычных дискет, но благодаря высокой плотности записи производителю удалось добиться и рекордной емкости запоминающего устройства. Впрочем, Zip’ы оказались довольно ненадежными и дорогими, поэтому не смогли занять нишу трехдюймовых дискет, а впоследствии и вовсе были вытеснены более совершенными запоминающими устройствами.

Дискеты

Годы жизни: 1971- по сей день

Объем памяти: до 2,88 Мб

Компактный размер, низкая стоимость

– Небольшая надежность, уязвимый корпус, невысокая плотность записи

Магнитная лента

Годы жизни: 1952 - по сей день

Объем памяти: до 4 Тб

Возможность перезаписи, широкий диапазон рабочих температур (от -30 до +80 градусов), низкая стоимость носителей

– Невысокая плотность записи, невозможность мгновенного доступа к нужной ячейке памяти, невысокая надежность


Накопители на магнитных лентах представляли собой огромные шкафы с лентопротяжным механизмом и катушками с лентой, на которую и производилась запись информации.

ЖЕСТКИЕ ПРАВИЛА

Жесткий диск, Hard Disk Drive, является основным запоминающим устройством практически во всех современных компьютерах.

В целом принцип действия как существующих, так и разрабатываемых жестких дисков основан на явлении остаточного намагничивания материалов. Но здесь есть свои нюансы. Непосредственным носителем информации в жестком диске является блок из одной или нескольких круглых пластин, покрытых ферромагнетиком. Считывающая головка, двигаясь над поверхностью вращающихся с высокой скоростью дисков, производит запись информации путем намагничивания миллиардов крошечных областей (доменов) или считывание данных за счет регистрации остаточного магнитного поля.

Наименьшей ячейкой информации в данном случае является один домен, который может быть либо логическим нулем, либо единицей. Таким образом, чем меньше размеры одного домена, тем больше данных можно впихнуть на один жесткий диск.

Первый HDD появился в 1956 году. Устройство состояло из 50 дисков диаметром 600 мм каждый, вращавшихся со скоростью 1200 об/мин. Размеры этого HDD были сравнимы с современным двухкамерным холодильником, а емкость составляла целых 5 Мб.

С тех пор плотность записи на жестких дисках увеличилась более чем в 60 млн раз. На протяжении последнего десятилетия компании-производители стабильно удваивали емкость дисков каждый год, но сейчас этот процесс приостановился: достигнута максимально возможная плотность записи для ныне использующихся материалов и, главное, технологий.

Наиболее распространена сейчас так называемая параллельная запись. Смысл ее в том, что ферромагнетик, на который осуществляется перенос данных, состоит из множества атомов. Некоторое количество таких атомов вместе составляет домен - минимальную ячейку информации. Уменьшение размеров домена возможно только до определенного предела, так как атомы ферромагнетика взаимодействуют друг с другом и в месте стыка логического нуля и единицы (областей с противоположно направленными магнитными моментами) могут потерять стабильность. Поэтому требуется определенная буферная зона, обеспечивающая надежность хранения информации.


При параллельной записи магнитные частицы размещены таким образом, что вектор магнитной направленности располагается параллельно плоскости диска. При перпендикулярной записи магнитные частицы располагаются перпендикулярно поверхности диска.

При параллельной записи магнитные частицы размещены таким образом, что вектор магнитной направленности располагается параллельно плоскости диска. С точки зрения технологии это самое простое решение. В то же время при такой записи сила взаимодействия между доменами наиболее высока, поэтому нужна большая буферная зона, и, следовательно, больший размер самих доменов. Так что максимальная плотность при параллельной записи составляет около 23 Гбит/см2, и эта высота уже практически взята.

Дальнейшее увеличение емкости жестких дисков возможно за счет увеличения количества рабочих пластин в устройстве, но этот способ является тупиковым. Размеры современных HDD стандартизованы, да и количество используемых в них дисков ограничено по конструктивным требованиям.

Есть и другой путь - использование нового типа записи. С 2005 года в продаже можно найти жесткие диски, использующие метод перпендикулярной записи. При такой записи магнитные частицы располагаются перпендикулярно поверхности диска. Благодаря этому домены слабо взаимодействуют друг с другом, так как их векторы намагниченности располагаются в параллельных плоскостях. Это позволяет серьезно увеличить плотность информации - практический потолок оценивается в 60-75 Гбит/см2, т. е. в 3 раза больше, чем для параллельной записи.

Но самой перспективной считается технология HAMR. Это так называемый метод тепловой магнитной записи. По сути HAMR - дальнейшее развитие технологии перпендикулярной записи, с той лишь разницей, что в момент записи нужный домен подвергается кратковременному (около пикосекунды) точечному нагреву лазерным лучом. Благодаря этому головка может намагничивать очень мелкие участки диска. В открытой продаже HAMR-HDD пока нет, но опытные образцы демонстрируют рекордную плотность записи - 150 Гбит/см2. В дальнейшем, по мнению представителей компании Seagate Technology, плотность удастся увеличить до 7,75 Тбит/см2, что почти в 350 раз выше предельной плотности для параллельной записи.

HDD c параллельной записью

Годы жизни: 1956 - по сей день

Объем памяти: до 2 Тб на данный момент

Возможность мгновенного перехода к нужной ячейке информации, хорошее сочетание цена/качество

– Недостаточная на сегодняшний день плотность записи, морально устаревшая технология

HDD c перпендикулярной записью

Годы жизни: 2005 - недалекое будущее

Объем памяти: до 2,5 Тб на данный момент

Высокая плотность записи

– Более сложная технология изготовления, высокая цена, невысокая надежность новых емких моделей

HAMR-HDD

Годы жизни: 2010 - недалекое будущее

Объем памяти: время покажет

Еще более высокая плотность записи

– Особенно сложная технология изготовления и соответствующая ей высокая цена

ОПТИКА НА МАРШЕ

Несмотря на постоянное увеличение емкости стационарных жестких дисков, существует потребность в компактном и мобильном носителе информации. На сегодняшний день в этой области лидируют CD и DVD. Фактически любую информацию - музыку, софт, фильмы, энциклопедии или клипарты - можно купить на этих носителях.

Первый представитель этой технологии - LD (Laser Disc), разработанный еще в 1969 году. Эти диски предназначались прежде всего для домашних кинотеатров, но, несмотря на ряд преимуществ перед видеокассетами VHS и Betamax, широкого распространения они не получили. Следующий представитель оптических носителей оказался куда более удачным. Это был всем известный компакт-диск (CD, Compact Disc). Он был разработан в 1979 году и первоначально предназначался для записи высококачественной музыки. Но в 1987 году стараниями Microsoft и Apple компакт-диски стали использоваться и в персональных компьютерах. Так пользователи получили в свое распоряжение компактный и надежный носитель информации высокой емкости: стандартный объем в 650 Мб для конца 80-х казался неисчерпаемым.

За последние 20 лет CD практически не изменился. Носитель представляет собой своеобразный «бутерброд», состоящий из трех слоев. Основа компакт-диска - поликарбонатная подложка, на которую распыляется тончайший слой металла (алюминий, серебро, золото). На этот слой, собственно, и производится запись. Металлическое напыление покрывается слоем защитного лака, и уже на него наносятся всякие картинки, логотипы, названия и другие опознавательные знаки.

Принцип работы оптических дисков основан на изменении интенсивности отраженного света. На обычном CD вся информация записана на одной спиральной дорожке, представляющей собой последовательность углублений, питов (от англ. pit - «впадина»). Между углублениями расположены участки с гладким отражающим слоем, лэндов (от англ. land - «земля, поверхность»). Данные считываются при помощи лазерного луча, сфокусированного в световое пятно диаметром около 1,2 мкм. Если лазер попадает на лэнд, специальный фотодиод регистрирует отраженный луч и фиксирует логическую единицу. Если же лазер попадает в пит, луч рассеивается, интенсивность отраженного света уменьшается и устройство фиксирует логический ноль.

Первые лазерные диски были предназначены только для чтения. Они изготавливались строго в заводских условиях и питы на них наносились при помощи штамповки непосредственно на голую поликарбонатную подложку, после чего диски покрывали отражающим слоем и защитным лаком.

Но уже в 1988-м появилась технология CD-R (Compact Disc-Recordable). Диски, выполненные по этой технологии, можно было использовать для однократной записи информации при помощи специального пишущего привода. Для этого между поликарбонатом и отражающим слоем был размещен еще один слой из тонкого органического красителя. При нагревании до определенной температуры краситель разрушался и темнел. В процессе записи привод, управляя мощностью лазера, наносил на диск последовательность темных точек, которые при считывании воспринимались как питы.

Еще через десять лет, в 1997 году, был создан CD-RW (Compact Disc-Rewritable) - перезаписываемый компакт-диск. В отличие от CD-R, здесь в качестве записывающего слоя использовался специальный сплав, способный под воздействием лазерного луча переходить из кристаллического состояния в аморфное и обратно.

LD

Годы жизни: 1972–2000

Объем памяти: 680 Мб

Первый коммерческий образец оптических носителей данных

– Использовался только в качестве носителя видео и аудио и по размерам не уступал виниловым дискам, что создавало определенные неудобства

CD

Годы жизни: 1982 - по сей день

Объем памяти: 700 Мб

Компактность, относительная надежность, дешевизна

– Низкая, по современным меркам, емкость, морально устаревшая технология

БОЛВАНКИ НОВОГО ПОКОЛЕНИЯ

В середине 90-х, когда эпоха CD была в самом разгаре, прозорливые производители уже работали над усовершенствованием оптических дисков. В 1996 году в продаже появились первые DVD (Digital Versatile Disc) емкостью 4,7 Гб. Новые носители информации эксплуатировали тот же самый принцип, что и CD, только для считывания использовался лазер с меньшей длиной волны - 650 нм против 780 нм у компакт-дисков. Это, казалось бы, нехитрое изменение позволило уменьшить размер светового пятна, а, следовательно, и минимальный размер ячейки информации. Поэтому DVD-диск смог вместить в 6,5 раз больше полезной информации, чем CD.

В 1997 году в продажу поступили и первые записываемые DVD-R, тоже эксплуатирующие технологию, проверенную на CD-R. Впрочем, до широких масс эти новшества дошли только через несколько лет, поскольку первый пишущий привод для DVD-R стоил порядка $17 000, а болванки - по $50 за штуку.

Сегодня DVD стал неотъемлемой частью компьютерной индустрии. Но и ему жить осталось недолго. Стремительный прогресс в области высоких технологий и растущие потребности пользователей требуют новых, более емких носителей.

Первой ласточкой стали двуслойные DVD. В них информация записывается на двух разных уровнях, обычном нижнем и полупрозрачном верхнем. Изменяя фокусировку лазера, можно считывать данные с обоих слоев поочередно. Такие DVD вмещают 8,5 Гб информации. Затем появились двуслойные двусторонние DVD. У этих дисков обе стороны рабочие и содержат по два слоя информации. Вместимость носителей выросла до 17 Гб.

На этом показателе был достигнут потолок DVD-технологии. Дальнейшее увеличение количества слоев представляется излишне сложной проблемой, толщина диска все же ограничена, так что впихнуть туда что-то очень трудно. Кроме того, даже при двуслойной системе было множество нареканий на качество считывания информации, а уж сколько ошибок могут выдать гипотетические трехслойные DVD - и подумать страшно.

Производители решили (временно, конечно) проблему увеличения емкости путем создания нового формата. Вернее, сразу двух: HD-DVD и Blu-ray. Обе технологии используют синий лазер с длиной волны в 405 нм. Как мы уже сказали, уменьшение длины волны позволяет также уменьшить минимальный размер ячейки памяти и, следовательно, увеличить плотность записи. Появление сразу двух новых типов дисков спровоцировало так называемую «войну форматов», длившуюся около двух лет. В конечном итоге, несмотря на определенные преимущества, HD-DVD этот бой проиграл. По мнению многих экспертов, главную роль в этом сыграла исключительно мощная поддержка американскими киностудиями формата Blu-ray.

«Голубой луч» сейчас является единственным оптическим носителем информации высокой емкости, который можно найти в продаже. Диски 23, 25, 27 и 33 Гб. Существуют и двуслойные образцы объемом 46, 50, 54 и 66 Гб.

DVD

Годы жизни: 1996 - по сей день

Объем памяти: до 17,1 Гб

Самый популярный носитель информации: подавляющее большинство музыки, фильмов и разнообразного софта распространяется именно на DVD

– Морально устаревшая технология

HD-DVD

Годы жизни: 2004–2008

Объем памяти: до 30 Гб

Высокая емкость плюс относительно невысокая цена за счет более дешевого производства

– Отсутствие поддержки американской киноиндустрии.

Blu-ray

Годы жизни: 2006 - по сей день

Объем памяти: до 66 Гб

Высокая емкость носителей, поддержка голливудских «монстров»

– Большая стоимость приводов и носителей, поскольку для производства требуется принципиально новое оборудование

ГОНКА ГИГАБАЙТОВ

Рынок дисковых накопителей - весьма лакомый кусочек. Поэтому уже в ближайшее время следует ожидать если не смещения Blu-ray с лидирующих позиций, то новой войны форматов.


Уникальной особенностью голографического метода является возможность записи огромного количества информации практически в одну точку. Это дает производителям основание утверждать, что уже достигнутый потолок в 3,6 Тб - далеко не предел.

Существует целый ряд технологий, претендующих на кошельки пользователей. Например, HD VMD (High Density - Versatile Multilayer Disc). Этот формат был представлен в 2006 году малоизвестной британской компанией New Medium Enterprises. Тут производитель пошел по пути увеличения количества записываемых слоев в одном диске - их аж 20. Благодаря этому максимальная емкость HD VMD на сегодняшний день составляет 100 Гб. В целом маловероятно чтобы небольшая New Medium Enterprises сумеет всерьез потеснить мультимедиагигантов. Но благодаря заявленной низкой стоимости дисков и приводов к ним (за счет использования более дешевого красного лазера с длиной волны 650 нм) теоретически британцы могут рассчитывать на определенную популярность своей продукции. Если она, конечно, вообще доберется до рынка.

Еще один претендент - формат Ultra Density Optical (UDO). Разработка началась еще в июне 2000 года, и сейчас это уже вполне готовое устройство, доступное на рынке. Здесь была сделана ставка на увеличении точности фокусировки луча. При длине волны лазера в 650 нм диск UDO вмещает от 30 до 60 Гб информации. Существуют также носители, использующие синий лазер (405 нм), и в этом случае максимальный объем UDO достигает 500 Гб. Но за все нужно платить: увеличение точности лазера стало причиной серьезного удорожания приводов. Сами носители выпускаются в виде 5,35-дюймового картриджа с диском внутри (для защиты от внешних воздействий) и продаются по цене в $60-70. На сегодняшний день технология UDO используется в основном крупными компаниями для архивации информации и создания резервных копий данных.

HD VMD (High Density - Versatile Multilayer Disc)


Годы жизни: 2006 - недалекое будущее

Объем памяти: до 100 Гб

Высокая емкость, относительно низкая стоимость

– Отсутствие поддержки крупных игроков рынка, что наверняка станет причиной смерти формата

UDO (Ultra Density Optical)


Годы жизни: 2000 - по сей день

Объем памяти: до 120 Гб

Хорошая емкость

– Высокая стоимость приводов и носителей, ориентация на узкоспециализированный рынок устройств архивации данных

ГОЛОГРАФИЯ ЖЖЕТ

Несмотря на обилие форматов оптических дисков, уже существует технология, которая в будущем наверняка оставит за бортом всех конкурентов. Речь идет о голографической записи. Преимущества этой технологии и ее потенциал огромны. Во-первых, если в обычных оптических дисках информация записывается на слой при помощи отдельных ячеек информации, то в голографической памяти данные распределяются по всему объему носителя, причем за один такт может записываться несколько миллионов ячеек, благодаря чему скорость записи и чтения резко увеличивается. Во-вторых, за счет распределения информации в трех измерениях максимальная емкость носителя достигает действительно заоблачных высот.

Работы в этом направлении начались около десяти лет назад, и на сегодняшний день существует вполне внятная технология, по которой на стандартных размеров диск можно записать 1,6 Тб информации. При этом скорость чтения составляет 120 Мб/с.

Принцип действия голографической записи реализован следующим образом. Лазерный луч при помощи полупрозрачного зеркала разделяется на два потока, имеющих одинаковую длину волны и поляризацию. Пространственный световой модулятор, представляющий собой плоский трафарет, преобразует цифровую информацию в последовательность прозрачных и непрозрачных ячеек, которые соответствуют логическим единице и нулю. Сигнальный луч, пройдя через эту решетку и получив порцию информации, проецируется на носитель. Второй луч - опорный - под углом падает в ту же область диска. При этом в точках, где опорный и сигнальный лучи пересекаются, происходит сложение амплитуд волн (интерференция), в результате чего лучи совместными усилиями прожигают светочувствительный слой, фиксируя информацию на носителе. Таким образом за один такт записывается сразу вся информация, которую может осилить разрешающая способность светового модулятора. На сегодняшний день это порядка миллиона бит за раз.

Считывание данных происходит при помощи опорного луча, который, проходя сквозь тело носителя, проецирует записанную голограмму на светочувствительный слой, а уже тот преобразует падающую на него «решетку» в последовательность нулей и единиц.

Уникальной особенностью голографического метода является возможность записи огромного количества информации практически в одну точку. Благодаря этому можно эффективно использовать весь объем носителя. Практический потолок емкости голографических дисков точно неизвестен, но производители утверждают, что уже достигнутый ими потолок в 3,6 Тб - далеко не предел.

Голографические диски


Годы жизни: недалекое будущее

Объем памяти: до 1 Тб

Очень, ну очень высокая емкость при сохранении компактных размеров носителя

– Время покажет

HDD + ЛАЗЕР

В 2006 году Даниэл Стэнсю (Daniel Stanciu), работавший над своей докторской диссертацией, и доктор Фредерик Ханстин открыли способ изменения полярности магнита при помощи светового излучения. Надо сказать, что раньше это считалось невозможным в принципе. Неудивительно, что Даниэл Стэнсю с триумфом защитил докторскую диссертацию, а сама технология, получившая довольно странное название - чистооптическая инверсия намагниченности, - уже нашла потенциальное применение.

Итак, при помощи лазерного луча можно намагничивать домены жестких дисков, т. е. выполнять ту же самую работу, над которой сейчас трудится пишущая головка, но намного быстрее. Скорость записи на обычный жесткий диск не превышает 100–150 Мбит/с. В прототипе «лазерного» жесткого диска этот показатель на сегодняшний день составляет 1 Тбит/с или 1 000 000 Мбит/с. Ученые уверены, что это не предел - они рассчитывают увеличить скорость записи до 100 Тбит/с. Кроме того, при помощи лазера можно существенно увеличить плотность записываемой информации, что, теоретически, делает лазерные жесткие диски одной из наиболее перспективных технологий хранения и записи данных.

Но на сегодняшний день нет никакой информации об устройстве считывающей головки для таких HDD. При помощи лазера можно только записывать информацию. Фиксировать намагниченность доменов он не может. Следовательно, для чтения нужно будет использовать стандартные магнитные головки. Кроме того, не стоит забывать, что и скорость записи, и скорость чтения HDD напрямую зависят от скорости вращения дисков. Так что оптимистические заявления ученых выглядят несколько странно. Для достижения показателя в 1 Тбит/с нужно раскрутить диск до таких скоростей, что он, вероятно, разлетится на куски под действием чудовищной центробежной силы или вовсе сгорит от трения об воздух. Конечно, использование определенной оптической системы перенаправления луча позволяет вовсе отказаться от вращения диска при записи. Но чтение-то производится по-прежнему магнитной головкой, которой жизненно необходимо скользить над поверхностью диска.

Словом, перспективы технологии чистооптической инверсии намагниченности хоть и привлекательны, но весьма туманны.

Лазерный HDD

Годы жизни: недалекое будущее

Объем памяти: время покажет

Высокая плотность и скорость записи информации, в перспективе - возможность уменьшения количества движущихся частей диска

– Слишком много вопросов, на которые никто не дает ответов

БЛЕСТЯЩЕЕ БУДУЩЕЕ?

Диски дисками, но обычному пользователю бывает жизненно необходим компактный, емкий и, главное, простой в использовании накопитель информации. Сегодня для этой цели используют флэшки, или, говоря по-научному, USB Flash Drive. Флэш-память этого устройства представляет собой массив транзисторов (ячеек), каждый из которых может хранить один бит информации.

У подобного носителя есть масса преимуществ. Флэшки, в отличие от своих предшественников, не имеют движущихся деталей. Они компактны, надежны и способны хранить довольно солидные объемы информации, да и производители неустанно трудятся над увеличением их емкости. Существуют флэш-накопители, вмещающие 8, 12 и даже 64 Гб данных. Правда, подобные игрушки по стоимости конкурируют с первоклассным компьютером в комплектации «все включено», но это временное явление. Еще недавно за флэшку емкостью 1 Гб просили целое состояние, а сейчас она доступна каждому студенту, получающему стипендию.

Еще одно преимущество флэш-накопителя - простота в использовании. Флэшка подсоединяется к USB-порту компьютера, операционная система обнаруживает новое устройство, а содержимое флэшки отображается в виде дополнительного диска в системе. Соответственно и работа с файлами не отличается от работы с обычным жестким диском. Не требуется никаких дополнительных программ, не нужно ломать голову над совместимостью устройств и форматов, всматриваться в производителя устройства, гадая, подойдет ли оно к компьютеру или нет.

Флэш-память надежна, не боится вибраций, не шумит, потребляет мало энергии, скорость обмена информацией приближается к показателям стандартных жестких дисков. Флэш-память, за счет отсутствия движущихся частей, обладает высокой надежностью, не боится вибраций, не шумит и потребляет мало энергии. Преимущества очевидны.


Считывание данных при голографическом методе происходит при помощи опорного луча, который, проходя сквозь тело носителя, проецирует записанную голограмму на светочувствительный слой, а уже тот преобразует падающую на него «решетку» в последовательность нулей и единиц.

Сегодня уже выпускаются портативные компьютеры, в которых вместо привычных HDD установлены чипы SSD (Solid State Drive), так называемые твердотельные накопители на основе флэш-памяти. Принципиально от обычных флэшек такие запоминающие устройства ничем не отличаются. Ноутбуки с SSD, благодаря низкому энергопотреблению, способны работать почти в два раза дольше, чем оборудованные обычными жесткими дисками. Однако у флэш-памяти есть и свои серьезные недостатки. Во-первых, скорость обмена данными в SSD пока еще существенно отстает от показателей жестких дисков. Но эта проблема будет решена в самом ближайшем будущем. Второй недостаток значительно серьезней. Флэш-память в силу конструкции выдерживает ограниченное число циклов стирания и записи - порядка 100 000 циклов. Не вдаваясь в технические подробности, можно поставить диагноз: процесс записи и стирания данных ведет к физическому износу ячеек памяти на электронном уровне. Впрочем, взяв в руки калькулятор и проделав простейшие вычисления, пользователь светлеет лицом и радостно заявляет, что даже если каждый день десять раз в день полностью перезаполнять флэшку, 100 000 циклов хватит на 27 лет! Но на практике флэш-память (например, карта памяти в фотоаппарате), интенсивно используемая каждый день, может выйти из строя уже через два-три года эксплуатации.

Flash-память

Годы жизни: 1989 - по сей день

Объем памяти: до 80 Гб

Простота в использовании, низкое энергопотребление, надежность

– Ограниченное число циклов записи/стирания

Сегодня прогресс в области компьютерных технологий вообще и запоминающих устройств в частности стремительно меняет мир.

В будущее заглядывать - дело неблагодарное, но можно с уверенностью утверждать: если производители не смогут победить единственный серьезный недостаток флэш-памяти, не сумеют достичь необходимого пользователям объема HDD или создать простой и надежный голографический диск, они неизбежно придумают другой способ хранения информации.

Дешевый, надежный, компактный, быстрый.