Анатолий михайлович артемьев противолодочные самолеты. Анатолий михайлович артемьев противолодочные самолеты Бывают ли немагнитные танки

Одной из важнейших задач авиации ВМФ является борьба с подводными лодками противника. Противоборство авиации и подводных лодок насчитывает не один десяток лет. За эти годы противолодочные самолеты и подводные ракетоносцы превратились в достойных противников, так как относятся к наиболее сложным и совершенным видам современной военной техники. В книге рассказывается об истории развития отечественной противолодочной авиации и о решении ею реальных задач при несении боевой службы.

Самолет Бе-12 и его оборудование

Самолет-амфибия Бе-12 построен по схеме высокоплана с разнесенными рулями направления и силовой установкой из двух турбовинтовых двигателей АИ-20Д.

Планер амфибии состоит из лодки, крыла с подкрыльными неубирающимися поплавками, предназначенными для обеспечения поперечной устойчивости на плаву и хвостового оперения.

Лодка самолета двухреданная глиссирующего типа: первый редан, расположенный поперек, облегчает изменение угла дифферента (угла хода) лодки на разбеге, второй, образованный изломом днища в кормовой части, способствует выходу на первый редан. Днище лодки имеет переменную килеватость – у первого редана ее утол составляет 27 град, с возрастанием к носовой части до 60 град.

Для отклонения потока воды вниз и уменьшения брызгообразования и сопротивления на глиссировании днище лодки в области скул имеет обратный наклон. По бортам передней части лодки установлены брызгоотражатели. Герметичными переборками лодка разделена на 10 отсеков, из которых восемь водонепроницаемы. Этим обеспечивается непотопляемость при повреждении двух любых отсеков. Для сообщения между отсеками разделяющие их переборки снабжены люками с герметично закрывающимися дверями.

В носовой части лодки находится негерметичная кабина штурмана и летчиков. Катапультные кресла летчиков обеспечивали покидание самолета на высотах свыше 100 м. Перед катапультированием кресла принудительно откатывались в заднее положение. Во второй кабине размещался радист. В случае необходимости он покидал самолет через боковой люк в правом борту лодки.

Две двери в правом борту лодки (одна – в носовом отсеке, вторая – в хвостовой части предназначались для входа и выхода экипажа. Двери, как это принято на кораблях, сделаны открывающимися вовнутрь, что облегчало покидание лодки в случае ее затопления. Палубный и якорный люки в передней части лодки предназначаются для выполнения операций штурманом, связанных с постановкой самолета на бочку.

На бортах средней части лодки впереди редана (между шпангоутами № 22 – 26 обоих бортов) сделаны ниши для основных опор шасси в убранном положении стойки. Кинематика шасси выполнена из сплавов стали.

Пятый и шестой отсеки лодки имеют вырез длиной 4875 мм (высота 3200 мм, ширина 1800 мм) под грузоотсек с двумя люками – верхним и нижним, закрываемыми створками с механизмом привода от гидромоторов. По контуру вырезов люки снабжены шлангами герметизации, заполняемыми воздухом из пневмосистемы.

Под днищем у заднего редана установлен водяной руль, в нишу за этим реданом убирается задняя хвостовая опора, наиболее крупные детали которой изготовлены из маломагнитных титановых сплавов.


1. Поисковый магнитометр АПМ-60 2. Турбогенераторная установка АИ-8 3. Кабина радиста 4. Палубный люк грузового отсека 5. Крыльевые топливные баки 6. Топливные баки- отсеки 7. Хвостовое колесо 8. Крышка контейнера спасательной лодки 9. Турбовинтовой двигатель АИ-20Д 10. Лодочный топливный бак 11. Аварийные люки летчиков 12. Кабина летчиков 13. Кабина штурманов 14. Противолодочные авиационные торпеды АТ-1 15. Главные ноги шасси 16. Входная дверь 17. Якорный люк 18. Аварийный люк штурмана

Длина лодки, включая обтекатель РЛС и штангу магнитометра, составляет 30,1 м. Осадка на плаву при убранном шасси – 1,55 м.

Крыло самолета в плане трапециевидное, кессонное, типа «чайка» с положительным углом в 20 град, на центроплане и отрицательным в 1,5 град, на остальной части крыла, что способствует уменьшению резкого накренения самолета при отказе одного двигателя. Чтобы обеспечить полет на малых скоростях, крыло набрано из профилей с относительно большой толщиной.

Механизация крыла состоит из однощелевых выдвижных закрылков и элеронов. Элероны снабжены триммерами с электрическим управлением и сервокомпенсаторами.

На нижней поверхности хвостовых отсеков крыла находятся посадочные фары, на концевых – бортовые аэронавигационные огни. На левой консоли крыла установлен контейнер для ориентирных морских бомб, на нижней поверхности средней части расположены узлы крепления балочных держателей для наружной подвески грузов.



К консолям крыла на пилонах крепятся неубирающиеся в полете однореданные поплавки опорного типа с плоскокилеватым днищем. Выбор поплавков подобного типа вызван тем, что центр тяжести самолета расположен относительно высоко, а поперечная ватерлиния узкая, всего лишь 2,1 м, и поплавки предназначены обеспечить динамическую и статическую устойчивость самолета на плаву. Они разделены на пять отсеков. При прямом положении лодки (на ровном киле) и осадке менее 1,4 м между поплавком и водной поверхностью остается небольшой зазор. Во избежание зарывания поплавков носом в воду на взлетно-посадочных режимах они установлены под углом 5 град, к нижней строительной горизонтали (касательная к килю первого редана) лодки. Поэтому угол дифферента поплавков всегда на 5 град, больше, чем у лодки, дифферент которой на корму при нормальном полетном весе равен 2 град.

Хвостовое оперение состоит из стабилизатора с рулями высоты и разнесенным вертикальным оперением. На верхней части рулей направления установлены якорные огни (включаются при стоянке самолета на бочке или на якоре) и огни сигнализатора «Вода в отсеке».

Самолет оборудован двойной механической системой управления со смешанной проводкой. В кабине летчиков установлены две рулевые колонки и двойные педали управления. При аварийном покидании самолета летчиками колонки штурвалов с помощью пневмосистемы автоматически отбрасываются в переднее положение.

Для управления водорулем служит необратимый бустер, соединенный тросовой проводкой с рулями поворота (используется только для полетов с воды. При полете с сухопутного аэродрома специальной муфтой водоруль отключается).

До самолета № 9601504 устанавливались двигатели АИ-20Д третьей серии, на последующих – четвертой. Они размещены в гондолах и крепятся с помощью ферм к переднему лонжерону крыла. Боковая, передняя и задние крышки капота двигателя в открытом положении обеспечивают свободный доступ к агрегатам двигателя, а также используются в качестве площадок для обслуживания двигателя как в аэродромных условиях, так и на плаву. Несмотря на столь явную заботу о техническом составе, все же имели случаи падения с почти пятиметровой высоты.





Двигатели АИ-20Д третьей и последующих серий комплектуются четырехлопастным воздушным винтом АВ-68Д диаметром 5 м и имеют эквивалентную мощность 5180 л.с. В полете за счет изменения углов установки лопастей винтов обороты двигателя поддерживаются постоянными – 1075 об./мин.

Из-за необходимости значительной мощности для холодной прокрутки двигателя угол установки лопастей при запуске уменьшен до 3 град. В случае самопроизвольного перехода винта на малые углы атаки в полете возникает значительное лобовое сопротивление, именуемое отрицательной тягой, которое грозит потерей скорости и управляемости самолетом. Для защиты от нее предусмотрены аварийные устройства автофлюгирования (по отрицательной тяге, по крутящему моменту), промежуточный упор, принудительное флюгирование от флюгерного маслонасоса и др.

Если после посадки самолета лопасти винта снять с промежуточного упора, то создаваемая ими отрицательная тяга способствует существенному сокращению длины пробега.

Топливная система служит для размещения керосина, подведения его к двигателям и экстренного слива в аварийных случаях. Керосин Т-1, Т-2, ТС-1 находится в 13 баках, из которых 12 симметрично расположены в крыльях и один в лодке. Нормальная заправка топливом 8600 кг. Она может производиться централизованно или через заправочные горловины. В случае необходимости в полете за 6 мин. обеспечивается слив 4500 л. В грузоотсеке можно установить два дополнительных бака общей емкостью 1980 л (1380 кг).





Размещение четырех членов экипажа в двух негерметичных кабинах ограничило потолок самолета высотой 8000 м, а также способствовало значительному уровню шумов в кабинах, превышавшему все допустимые нормы. Для создания более комфортных условий кабины снабжены системами вентиляции и обогрева. Воздух для них отбирается от последних ступеней компрессоров двигателей. Проходя через установку кондиционирования, воздух подогревается или охлаждается. Система вентиляции оказалась малоэффективной, и температура воздуха в кабинах при полете на малых высотах летом нередко достигала 40 – 50 град. С.

Для подвески, транспортировки и применения буев и средств поражения на самолете предусмотрено торпедо-бомбардировочное вооружение, обеспечивающее возможность использовать самолет в поисковом (до 90 буев); поисково-ударном (36 буев, торпеда) и совершенно нерациональном по тактическим соображениям ударном (три торпеды] вариантах.

Для прицеливания при бомбометании по визуально видимым целям предусмотрен ночной коллиматорный прицел НКПБ-7.

При разработке самолета Бе-12 все, что предназначалось для поиска подводных лодок, слежения за ними и выработки данных на применение средств поражения, скромно именовалось поисково-прицельным оборудованием. Впоследствии их стали различать по степени автоматизации. Постепенно оборудование, установленное на Бе-12, стали именовать поисково-прицельной системой (ППС) с индексом 12.

В состав ППС-12 вошли: РЛС «Инициатива-2Б» («И-2Б»), система «Баку», магнитометр АПМ-60Е (до самолета № 6600603), прицельно-вычислительное устройство ПВУ-С-1(«Сирень-2М»), автоматический навигационный прибор АНП-1В-1, автопилот АП-6Е.

Решение задач ППС-12 обеспечивается в связи с пилотажно-навигационным оборудованием самолета.

Панорамная РЛС «И-2Б» имеет несколько масштабов дальности. Она применяется для самолетовождения, поиска надводных целей и используется в качестве визирной системы совместно с ПВУ при бомбометании по радиолокационно видимым целям. Мощность излучения ее передатчика в импульсе – 80-100 кВт. Дальность обнаружения выдвижных устройств ПЛ в благоприятных условиях не превышает 2 – 3 км.




Основной источник получения информации о подводной обстановке в ППС-12 – пассивные ненаправленные буи: РГБ-Н («Ива»); РГБ-НМ («Чинара»); РГБ-НМ-1 («Жетон»). Первые из них к моменту поступления самолетов в части применялись редко. Приемное устройство буев СПАРУ-55 электрических связей с элементами ППС-12 не имело и дополнено устройством, обеспечивающим практически одновременный (цикл перестройки 0,01 с) контроль за всеми выставленными буями и получившим название панорамный приемоиндикатор ПП-1. В качестве указателя использовали электронно-лучевую трубку из комплекта радиовысотомера РВ- 17. Второе средство обнаружения ПЛ в подводном положении – авиационный магнитометр АПМ-60Е. Его магниточувствительный блок размещен под обтекателем в хвостовой балке – месте, наименее подверженном магнитным помехам.







Электрическая проводка к нему для снижения помех выполнена двухпроводной. Пульт управления и регистрации магнитометра размещен в кабине штурмана. На Бе-12 после ввода соответствующих данных обеспечивается автоматический (полуавтоматический) вывод самолета в точку сбрасывания средств поражения с учетом их баллистических характеристик. Именно эти и некоторые другие частные тактические задачи решает ПВУ-С-1. Это счетнорешающее устройство аналогового типа (каждому мгновенному значению исходнои переменной величины с определенной точностью соответствует машинная переменная, отличающаяся от исходной физической природой и масштабным коэффициентом). Основной решающий элемент машины – потенциометрические датчики. Исходная информация о цели вводится в вычислитель вручную, а данные о высоте, курсе и скорости полета поступают автоматически от бортовых измерителей. Синхронизация перемещения перекрестия РЛС и цели в процессе прицеливания в ПВУ-С-1 обеспечивается с помощью АНП-1В-1.

В идее решения задачи поражения ПА в подводном положении принята довольно простая гипотеза. Считается, что ПА, обнаруженная одним из буев, двигаясь равномерно и прямолинейно, проходит через буй второго дополнительно выставленного барьера. По известному расстоянию между барьерами, времени их пересечения и другим данным рассчитывается место, курс и скорость цели. После получения необходимых данных штурман вводил их значения в ПВУ и с помощью автопилота самолет автоматически выводился в точку применения средств поражения. Задача могла решаться и в полуавтоматическом режиме при ручном управлении. Ввиду отличия реальных условий от гипотетических (не принималось во внимание, что ПА проходит не через центры буев) возникали методические ошибки в дополнение к неточностям ПВУ, в котором использовались потенциометры.

Автоматический навигационный прибор АНП-1В-1 «Азов» имеет связь с доплеровским измерителем путевой скорости и угла сноса ДИСС-1, что способствует повышению точности решения навигационных и тактических задач и электрически связан с магнитометром, от которого получает сигнал на его перевод в режим работы «Повторный выход». В этом случае экипаж имеет возможность, используя показания прибора, повторно выйти в точку перевода АНП в этот режим или выполнить относительно нее полет с постоянным радиусом.



Для поражения подводных лодок предназначались три типа противолодочных бомб и торпеда АТ-1.

Чрезвычайно низкая эффективность противолодочных бомб была достаточно известна, и некоторые надежды возлагались на самонаводящуюся в двух плоскостях акустическую электрическую авиационную торпеду АТ-1, которая впоследствии была модернизирована и стала называться АТ-1М.

Разработка торпеды под шифром ПЛАТ-1 началась в конце 50-х годов, в 1962 г. она поступила на вооружение. Конструктивно она состоит из трех отделений: боевого зарядного, аккумуляторного, кормового и хвостовой части. В передней части боевого зарядного отделения размещаются акустическая головка с приемно-излучающим устройством из четырех гидрофонов и приемного устройства (центральный гидрофон) пассивного канала аппаратуры самонаведения, зарядное отделение служит для размещения взрывчатого вещества, четырех взрывателей аппаратуры самонаведения (импульсный генератор, усилительное устройство и др.).

Для уменьшения скорости снижения торпеда снабжалась парашютами площадью 0,6 и 5,4 м? , обеспечивающими применение с высоты от 400 до 2000 м до скорости 600 км/ч при условии, что глубина моря в районе не менее 60 м.

Торпеда имела относительно невысокие возможности: дальность хода 5000 м, скорость – 28узлов(51,8км/ч), глубину хода от 20 до 200 м. За две-три минуты до сбрасывания торпеды штурман вводил глубину начального поиска. После отделения от самолета торпеда переходила на автономное питание, вытяжной парашют вводил в действие стабилизирующий парашют, обеспечивавший скорость снижения 100-120 м/с, купол основного после раскрытия на высоте 500 м снижал вертикальную скорость до 45 – 55 м/с, В момент касания водной поверхности торпеды парашют отстреливается и системой приводнения, состоящей из разъемного кольца с двумя прикрепленными к нему крыльями с постоянным углом установки 30 град, (раскрываются одновременно с тормозным парашютом), торпеда выводилась на заданную глубину начального поиска и начинала выполнять левую поисковую циркуляцию радиусом 60 – 70 м с угловой скоростью 12 град, в секунду. На этом этапе импульсный генератор аппаратуры самонаведения поочередно подавал электрические импульсы на верхний и нижний гидрофоны приемно-излучающего устройства торпеды. Электрические импульсы преобразовывались в ультразвуковые, и торпеда, циркулируя на постоянной глубине «просматривала» водную среду. Одновременно автономный акустический канал прослушивал водную среду с целью обнаружения собственных шумов цели.



С получением отраженного от цели сигнала по какому-либо из каналов управление торпедой в вертикальной плоскости передавалось блоку вертикального маневрирования, а в горизонтальной – торпедой продолжал управлять автомат курса. Угловая скорость маневрирования снижалась до 9 град./с. При прохождении торпеды на расстоянии 5 – 6 м отраженные от цели ультразвуковые импульсы вызывают срабатывание исполнительной части неконтактных взрывателей, цепь на запальные устройства контактных взрывателей замыкалась и боевой заряд торпеды подрывался. В случае прямого попадания взрыватели срабатывали от действия инерционных сил.

Если в процессе наведения акустический контакт с целью срывался, то торпеда в соответствии с логической программой приступала к вторичному поиску, циркулируя в районе потери контакта до его восстановления. В случае ненаведения по истечении 9 мин. контактные взрыватели торпеды срабатывали от самоликвидатора и она подрывалась.

При сбрасывании практических торпед после прохождения заданной дистанции или переуглублении гидростатический столовый механизм разрывал цепь питания приборов, аппаратуры и обмотки контактора. Последний размыкал цепь питания силового электродвигателя, он стопорился, и торпеда, имея положительную плавучесть, всплывала, Одновременно с этим приводились в действие шумоизлучатели, а с глубины 7 – 5 м и дымовой отметчик, облегчающий ее обнаружение.

Торпеды АТ-1 и их модификация производились на заводе «Дагдизель», выпуск прекращен в 1970 г., изготовлено 925 торпед.



Полковник Анатолий М.Артемьев/ Москва


Бе-12 из 318-го ОПЛАП ДД над Керчью

Период освоения

Освоение Бе-12 началось в сентябре 1964 г., когда 17 летчиков и инженеров из 33-го Учебного центра авиации ВМФ** прибыли в Запорожье на завод №478 для изучения двигателя АИ-20Д. Группа была неоднородна по своему составу. Три человека: п/п-к А.М.Артемьев (старший ведущий офицер-летчик отдела боевого использования противолодочной авиации), п/п-к Ю.С.Гвоздев (заместитель командира 555-го ПЛСАП***), Л.С.Сар-дановский (старший инспектор-летчик летно-методического отдела 33-го Центра) имели большой опыт полетов на колесных самолетах. Остальные летчики -м-р Сухенко, к-н Цехановский и другие -переучивались с Бе-6.

Появление в Запорожье людей в необычной для этого города черной форме с непонятными погонами, имевшими, кроме голубого просвета, еще и окантовку, вызвало много различных толков, а милиционеры на всякий случай отдавали честь старшим по званию офицерам. На изучение АИ-20Д отводилось 100ч. Преподавало несколько человек, каждый по той части двигателя, которую знал. Занятия проходили организованно,обучаемые и преподаватели остались друг другом довольны, а экзамены особой строгостью не отличались. Некоторые полученные нами сведения были любопытны. Так, оказалось, что командно-топливный агрегат двигателя разрабатывался немецкими инженерами, вывезенными из Германии после войны (возвратившись на родину, они запатентовали это хитроумное устройство). После окончания теоретического обучения слушатели произвели по два запуска двигателя и ВСУ на стенде. Это было далеко не лишним, учитывая одну особенность АИ-20Д - мощность его холодной прокрутки очень велика, поэтому в процессе запуска нужно внимательно следить за температурным режимом, корректируя кнопкой срезки подачу топлива.

* Статья подготовлена при содействии журнала "Авиация-Космонавтика".

** Ныне - 33-й Центр боевой подготовки ВВС Украины.

*** Противолодочный смешанный авиаполк. 555-й ПЛСАП находился в Очакове.

**** Отдельный противолодочный авиаполк дальнего действия.

После знакомства с двигателем группа отбыла в Таганрог для изучения самолета и оборудования на заводе №86. Программа, рассчитанная на 150 ч, завершилась 20 ноября. Здесь, как и в Запорожье, преподавали специалисты, но вместо того, чтобы больше внимания уделять эксплуатации самолета, забивали головы разной чепухой. Зато предоставилась возможность пообщаться с фирменными летчиками-испытателями М.И.Михайловым, Ю.Куприяновым и др. Особых недостатков самолета они не видели (главное - честь фирмы), а боевым применением не занимались. Впрочем, на этом этапе самым важным было подготовить преподавателей для последующего обучения летного и инженерно-технического состава частей авиации ВМФ, офицеров научно-исследовательских отделов для разработки приемов использования самолета, летного состава 555-го ПЛСАП для работы в качестве инструкторов.

Изучение самолета велось с записью в секретные тетради, что ничего, кроме недоумения, не вызывало. Наглядных пособий было достаточно, иногда использовались и зарубежные образцы. Например, в топливной системе Бе-12 были очень оригинальные соединения трубопроводов по типу применявшихся на сбитом американском разведчике U-2. Мы изучали такой образец с американской маркировкой. Офицеры имели возможность ознакомиться и с производством. Немалое удивление вызвали у нас довоенные, преимущественно немецкие, станки, большая доля ручного труда и многое другое. Как всегда, не обошлось без курьезов. Соответствующие органы всеми силами старались, чтобы иностранцы не догадались о наличии в Таганроге авиазавода, хотя с акватории залива, на побережье которого он располагался, периодически взлетали гид-рбсамолеты. Однако страусиная идеология преобладала, и однажды проживавшие в городской гостинице офицеры были срочно переведены в помещения на территории завода и в течение двух дней не могли выйти в город. Оказалось, что Таганрог посетил английский военный атташе без особого на то разрешения. По-видимому, он хотел убедиться, что завод находится на месте, а морские летчики приступили к изучению новой грозной техники.

Весной следующего года несколько летчиков и штурманов 33-го Центра завершили летное переучивание в Таганроге и получили допуск в качестве инструкторов. К маю Центр располагал первыми двумя Бе-12 (бортовые номера 20 и 21), однако для переучивания старались использовать самолеты, которые предназначались для авиации флотов и поставлялись в Очаков. По окончании учебной программы летный состав перегонял их в свои части. Первой из строевых частей, приступивших к освоению Бе-12, стал 318-й ОПЛАП ДД**** авиации ЧФ, группа летно-технического состава которого под руководством м-ра Б.Жидецкого прибыла в Очаков в июле-августе 1965 г. (последняя, третья эскадрилья этого полка во главе с м-ром Пряхиным завершила переучивание в апреле 1968 г.). Примерно в середине 1966г. в 555-й ПЛСАП поступил третий Бе-12, которому присвоили номер 25 (в настоящее время эта машина демонстрируется в музее ВВС в Монино), а к началу 1967 г. в частях авиации ВМФ числилось уже 12 Бе-12 первой серии. В том году происходило переучивание отдельной противолодочной эскадрильи авиации ТОФ, которой командовал п/п-к В.С.Токарев. В 1968 г. к освоению самолета приступил личный состав отдельного противолодочного полка авиации СФ с вновь назначенным командиром п/п-ком Ю.С.Гвоздевым. В марте 1970г. переучилось последнее подразделение - 49-я ОПЛАЭ авиации БФ, базировавшееся на аэродроме Коса. Эту группу возглавлял п/п-к Н.Г.Дмитриев*****.

Переучивание завершилось успешно, несмотря на несколько поломок. Так, летчик-североморец м-р Банько допустил грубую посадку и повредил подкрыльный поплавок. (В 1970г. Банько погиб на аэродроме Кипелово из-за срабатывания на земле стреляющего устройства катапультируемого кресла Бе-12). Другой случай связан с неграмотным запуском летчиком-инспектором 33-го Центра п/п-ком И.Гузеевым остановленного в учебных целях в полете двигателя. Лишь случайно на борту не начался пожар. В итоге самолет пришлось сажать на одном моторе. Как ни странно, но при разборе случившегося виновник был выставлен в самом лучшем свете, а неграмотные действия отмечены как инициативные. Гу-зееву даже присвоили звание "Заслуженный военный летчик СССР".

Ведущая роль в разработке основ боевого применения Бе-12, безусловно, принадлежит научно-исследовательским отделам 33-го Центра. К началу переучивания строевых частей методический отдел Центра подготовил программу переучивания и курс боевой подготовки, который во многом копировал таковой для Бе-6.

Серийный Бе-12 на заводском аэродроме в Таганроге

В нем излишне много внимания уделялось радиолокационному поиску и бомбометанию с помощью оптического и радиолокационного прицелов на сухопутных полигонах. Выяснилось, что установленный на самолете коллиматорный прицел НКЛБ-7 практически невозможно применять для бомбометания: расчетный угол прицеливания (высота 500 м, скорость полета 350-400 км/ч) составляет 65-68°, а угол визирования, который обеспечивает прицел, - 62°. С увеличением высоты до 1500-2000 м угол прицеливания уменьшался до 35-40°, но боевой курс оказывался столь коротким (15-20 с), что экипаж не успевал произвести боевую наводку. Это одна из причин, по которой бомбометание на сухопутных полигонах производилось по ра-диолокационно-контрастным целям с использованием в качестве визира бортовой РЛС в комплексе с ПВУ-С-1. Прицеливание сводилось к наложению электронного перекрестия на изображение цели на индикаторе РЛС с помощью рукояток визирования прицельно-вычислительного устройства. Однако быстро выяснилось, что перемещать перекрестие с высокой точностью вслед за отметкой цели довольно сложно. К моменту сброса ошибка прицеливания в некоторых случаях приводила к промаху на 300-350 м. Хорошо, что бомбометание являлось для Бе-12 задачей второстепенной.

Для выработки практических рекомендаций строевым частям по слежению за обнаруженными ПЛ в 33-м Центре провели специальные исследования. В ходе этой работы старший ведущий офицер-штурман научно-исследовательского отдела п/п-к Л.В.Терещенко предложил при слежении за подлодкой применять автоматику ПВУ-С-1 для постановки перехватывающих барьеров из буев. Для проверки теоретических положений провели серию исследовательских полетов с контролем за траекторией, а также два слежения за ПЛ в районе южнее Тенде-ровской косы с применением РГБ-НМ (субмарина выделялась Одесской ВМБ). Отработанные рекомендации были направлены в части.

Мнение летного состава о Бе-12 было неоднозначным. Все зависело от того, с чем сравнивать. Летчики, ранее летавшие на Бе-6, где даже штурвал был обмотан какой-то бечевкой, считали, что новая амфибия превосходит его по всем показателям. Но среди них были и те, кто ранее эксплуатировал Ту-14, Ту-16 и Ил-28. У этой категории Бе-12 восторгов не вызывал. Очень многим не нравился дизайн кабин, а особенно неудобным было рабочее место штурмана. Впервые увидевшие его недоумевали, как в подобных условиях можно работать с картой. Но больше всего летчикам досаждали сильный шум и вибрации, которые не только затрудняли использование гидроакустических средств поиска ПЛ и вели к снижению работоспособности экипажа, но, как утверждают некоторые врачи-урологи, отрицательно сказывались на его здоровье, способствуя образованию камней в почках и мочевом пузыре. Для уменьшения воздействия шума в штатные шлемофоны вставляли заполненные глицерином полиэтиленовые емкости, а сверху надевали защитный шлем. Светофильтры при этом летчики снимали, боясь зацепиться ими за ручки открытия верхних люков. Эффективность глицериновой защиты оказалась невысокой, ведь шумы и вибрации воспринимаются не только органами слуха: стоило пилоту прижаться головой к заголовнику кресла, как у него начинали стучать зубы. Надо сказать, что на Бе-12 защитный шлем был действительно необходим, т.к. занять рабочее место, не стукнувшись обо что-нибудь головой, было невозможно. Свидетельство тому - многочисленные вмятины на шлемах.

Фонарь кабины летчиков был подслеповатым и затруднял взлет и посадку. К тому же, на Бе-12 первых серий устанавливались не очень надежные электроприводные стеклоочистители. Позже их снабдили гидроприводом, но летчики продолжали заходить на посадку с открытой левой форточкой.

Так как воздушные винты на Бе-12 имеют одинаковое левое вращение, на самолет воздействует сильный реактивный момент, что особенно проявляется на взлете. Для компенсации момента шайбы вертикального оперения развернули вправо на 2°, однако эта мера оказалась эффективной лишь при попадании на них воздушных струй от винтов, т.е. при убранных закрылках. При их выпуске струи проходят ниже кильшайб, и бороться с разворотом самолета вправо летчикам приходится, давя изо всех сил на левую педаль (нагрузка на нее возрастает на 25-30 кгс). Вследствие того, что в момент уборки закрылков поток от винтов вновь попадает на шайбы, нагрузка на педаль резко уменьшается, а самолет норовит вильнуть влево.

Из-за большой площади боковой поверхности лодки Бе-12 во время разбега стремился развернуться "на ветер". Если дуло справа, приходилось не только полностью отклонять левую педаль, но применять тормоза и отклонять штурвал. Кстати, недостаточный теплоотвод от тормозов приводил к их частому перегреву, что вынуждало пользоваться ими с большой осторожностью. Иногда перегрев обнаруживался не сразу, а лишь после заруливания, когда от высокой температуры камера колеса разрушалась, а самолет садился на обод, вызывая каскад сложных идиоматических выражений техсостава. В ходе переучивания летчики, ранее летавшие на гидросамолетах, нередко так нажимали на тормозную педаль, что стирали все слои корда пневматиков, иногда даже не замечая этого. Это привело к нескольким летным происшествиям.

По-видимому, создатели Бе-12 полагали, что рост летчиков не бывает меньше 170-175 см. По этой причине невысокие пилоты испытывали во время взлета большие затруднения. Им, например, приходилось подкладывать себе подушку, а поднимать хвост самолета после достижения определенной скорости требовалось объединенными усилиями двух летчиков. Особен но ярко это проявилось в январе 1980 г., когда к переучиванию на Бе-12 приступили вьетнамские летчики. Наверное, те, кто отбирал для этого кандидатов, не имели о бериевской амфибии никакого понятия, т.к. приехавшие в Донузлав вьетнамские курсанты оказались для нее явно "жидковатыми". О состоянии их физической подготовки свидетельствует хотя бы то, что в ходе вывозных полетов двое из них потеряли сознание. Пришлось перевести всю Группу на усиленное питание (в тот период армия еще не голодала), и за короткое время они прибавили в весе по 6-10 кг.

Неувязки с переучиванием начались с самого начала, когда теоретический курс летчикам пришлось увеличить с 324 до 444 часов, примерно на столько же -специалистам по планеру и двигателю, а радиоэлектронщикам и вооруженцам количество занятий удвоили. Не лучше обстояло дело и с полетами, к которым приступили после изучения на русском языке перечня команд, названий приборов и т.п. Оказалось, что многие вьетнамцы имеют опыт полетов лишь на спортивных самолетах, поэтому переучивание фактически вылилось в обучение и затянулось на полгода (окончилось в феврале 1981 г.). Вместо 43 летных смен по плану было затрачено 72 (630 часов). Отдельным летчикам количество вывозных полетов пришлось увеличить в 8-10 раз и только после этого с большой опаской выпускать самостоятельно.

Много думали над тем, как доставить Бе-12 во Вьетнам. Из всех вариантов выбрали самый нелепый - по морю на транспортах. Причина проста - ответственность за доставку самолетов с плеч штаба авиации перекладывалась на моряков. Самолеты с отстыкованными консолями, килями, снятыми винтами взгромоздили на деревянные ложементы на палубе и отправили из Одессы в Камрань. Там их собрали и облетали. К сожалению, сведениями об их дальнейшей судьбе автор не располагает.

Найти и уничтожить

К началу работ по Бе-12 существовали средства поиска ПЛ, основанные на акустических и магнитометрических принципах обнаружения. К ним относилась радиогидроакустическая система обнаружения подводных лодок "Баку" и авиационный магнитометр АПМ-56. Безусловно, основными источниками информации о подводной обстановке являлись радиогидроакустические буи системы "Баку" трех типов: РГБ-Н "Ива", РГБ-НМ "Чинара", РГБ-НМ-1 "Жетон"*, различающиеся тактическими характеристиками, габаритами и массой. Все три типа * буев - пассивные ненаправленного действия. Они снабжены устройством автопуска, который включал передатчик буя на излучение при обнаружении шума определенного уровня. Эти передатчики работают на 18 частотных каналах по количеству буев в комплекте. Столько же каналов имеет бортовое приемное устройство СПАРУ-55.

Применявшиеся с Бе-12 буи вследствие конструктивных недостатков и низкого качества изготовления отличались плохой надежностью. Для определения необходимых доработок буев инженерная служба авиации ЧФ в июне 1966 г. организовала их испытания в присутствии представителей промышленности. Для начала проверили 18 буев, обнаружив 20 различных дефектов. После их устранения буи сбросили с самолета, в результате один из них разбился о воду из-за нераскрытия парашюта, а у четырех не вышли на расчетный режим источники питания. За месяц до этого также сбросили 18 буев, из которых отказало восемь по схожим причинам. Всего в целях определения надежности в 1966 г. черноморские Бе-12 сбросили 343 буя, из которых 117 (28%) оказались неисправными. Исследования, проведенные в следующем году (причем, сбрасывались доработанные буи), показали следующие результаты: у пяти РГБ из 18 не отделились парашютные отсеки, и они не пришли в рабочее состояние, а еще у пяти частично деформировался узел подвески. Лишь через несколько лет упорной работы надежность буев достигла 0,7-0,8.

Второе средство обнаружения ПЛ - магнитометр АПМ-60Е. Его магниточув-ствительный элемент размещен под обтекателем в хвостовой балке - месте, наименее подверженном магнитным помехам. Так же, как и его предшественник АПМ-56, он относится к феррозондовым, но по сравнению с установленным на Бе-6 образцом 1956 г. имеет несколько лучшую помехозащищенность и повышенную чувствительность. В конструкции АПМ-60Е использована элементная база конца 50-х гг. Поскольку в то время четких требований к электромагнитным полям самолетов разработано еще не было, чтобы обеспечить работоспособность магнитометра, пришлось прибегнуть к различным ухищрениям. На Бе-12, например, наиболее крупные детали конструкции хвостовой части изготовлены из маломагнитных материалов, а электрическая проводка для снижения помех выполнена двухпроводной. Пульт управления и регистрации АПМ-60Е снабжен пороговой схемой, выдающей сигнал на вход навигационного прибора АНП-1В-1 для перевода его в режим работы "Повторный выход" в случае достижения параметра сигнала заранее установленной величины. Это дает Бе-12 возможность выхода в кратчайшее время в точку установления магнитометрического контакта.

В соответствии с тактико-техническими требованиями, на Бе-12 предполагалось применить аппаратуру "Гагара",предназначенную для обнаружения ПЛ по тепловому следу. Принцип ее действия основан на дистанционной регистрации контраста между кильватерной струей ПЛ и окружающей водной поверхностью по инфракрасному излучению. "Гагара" представляла собой оптико-электронную систему, сканирующее зеркало которой в полете вращалось вокруг вертикальной оси, а визирный луч описывал на поверхности моря окружность.

* Подробные характеристики этих РГБ можно прочесть в "АиВ", №6"96, сто. 9-11.

В 1963 г. эта аппаратура поступила на заводские испытания, первый этап которых завершился в октябре 1964 г. Они показали, что опытный образец не оправдал возлагавшихся надежд. Тактико-техническим требованиям он не отвечал: тепловая чувствительность составляла 0,1° вместо заданной 0,01° при полете на высоте 500-2000 м. Кроме того, в дневное время аппаратуру можно было использовать только при неподвижном зеркале, т.к. в режиме сканирования наблюдались сплошные помехи. Серьезные проблемы для "Гагары" создавали и температурные неоднородности на поверхности воды, вызванные облачностью. Пока аппаратуру, названную впоследствии тепловизором, пытались привести в рабочее состояние, испытания Бе-12 завершились, и он начал поступать в части без "Гагары".

Но первые неудачи не остановили исследователей. В 1970 г. была предпринята попытка проверить возможности аппаратуры в Средиземном море, когда на аэродроме Мерса-Матрух в Египте базировались черноморские Бе-12. В штабе авиации не сразу раскусили, что подобное рвение специалистов филиала ЦНИИ продиктовано желанием побывать в экзотической стране. На неоднократные напоминания штаба авиации ВМФ о представлении отчета о проделанной работе следовали маловразумительные отговорки о сложности математической обработки полученных данных и т.п. В конечном итоге пришли к заключению, что "Гагара" позволяет отличить лишь сушу от водной поверхности и таким образом определить момент пересечения береговой черты. Впрочем, это нетрудно было заметить и без аппаратуры, масса которой достигала 340 кг.

Исследования более позднего периода, выполненные как в СССР, так и за рубежом, показали, что возможность обнаружения теплового кильватерного следа ПЛ явно переоценивали: след может и не выходить на поверхность моря. Опытным путем было установлено: атомная лодка, следующая на скорости 5 узлов (9,25 км/ч), повышает за собой температуру на 0,2°С. В результате теплообмена эта разница быстро уменьшается и на расстоянии около 1 км за кормой составляет всего лишь 0,01°С. Оказалось также, что струя довольно медленно поднимается на поверхность. Одна из причин этого - возрастание температуры и уменьшение плотности воды с приближением к поверхности. Поэтому не исключено, что теплая вода в следе ПЛ может подняться всего на несколько метров.

Для обнаружения ПЛ, следующих под выдвижными устройствами (перископы, устройства работы дизеля под водой и др.), на дальностях 10-12 км при состоянии моря до двух баллов применяется панорамная РЛС "Инициатива-2Б". Для эффективного применения противолодочного оружия Бе-12 оснащен специальным прицельно-вычислительным устройством аналогового типа(первые машины - ПВУ-С "Сирень-1", а амфибии последних серий - ПВУ-С-1 "Сирень-2М"). Исходная информация тактического характера вводится в это устройство вручную, а данные о высоте, курсе и скорости полета - автоматически. По сигналам, вырабатываемым ПВУ, автопилот выводит самолет в точку применения торпед и бомб, рассчитанную с учетом их баллистических характеристик, скорости и направления ветра и др.

Противолодочным самолетам при поиске ПЛ с помощью буев, слежении и решении других тактических задач приходится довольно часто выполнять маневры в горизонтальной плоскости. Это усложняет контроль за местоположением самолета в тактическом районе, точностью выполнения маневров и т.д. Поэтому на Бе-12 оказалось необходимым иметь устройство, обеспечивающее экипаж такой информацией в наглядной форме. Еще на Ил-28 и Ту-14 применялся навигационный индикатор НИ-50М, с помощью которого производилось счисление пути в прямоугольной системе координат, но по причине невысокой точности он широкого распространения не получил. Вскоре возникла идея дополнить индикатор устройством, показывающим положение самолета относительно начала отсчета в полярной системе координат: азимут и дальность. Так появился достаточно удобный и простой в использовании, а главное, очень нужный прибор, получивший название АНП-1 (АНП-1В, АНП-1В-1). Применяя его, экипаж по индикатору пеленга и дальности мог постоянно контролировать свое место в квадрате со сторонами до 50 км. С помощью АНП можно производить полет по окружности определенного радиуса и выполнять более сложные маневры.

Приборная панель пилотов

Кабина штурмана. Вид против полета

Центральный пульт пилотов

Эффективность противолодочного самолета оценивается по его способности производить поиск и уничтожение ПЛ на расчетном удалении от аэродрома базирования. В оперативных расчетах принято, что тактический радиус Бе-12 равен 500 км при нахождении в заданном районе в течение 3 ч, а один самолет, расходуя 60-70 буев типа РГБ-НМ или РГБ-НМ-1, способен обследовать район моря площадью 5000 км2 и обнаружить подводную лодку с вероятностью 0,5-0,6. Если же поиск лодки производится на заградительном барьере из буев, то возможности самолета ограничиваются его способностью выставить и контролировать барьер длиной 80-100 км. Поисковые возможности Бе-12 с применением магнитометрической аппаратуры существенно ниже. Например, при обследовании района площадью 2500 км2 вероятность обнаружения ПЛ составляет 0,01-0,02.

С целью увеличения эффективности Бе-12 усилия разработчиков противолодочного оборудования были направлены на объединение разрозненных средств получения и обработки информации о подводной обстановке, а также пилотаж-но-навигационных приборов в единую поисково-прицельную систему. Однако на точность выработки прицельных данных и сброса средств поражения это существенно не повлияло. Особую озабоченность вызывала низкая эффективность поражения ПЛ, движущихся под водой. Впрочем, на иное трудно было рассчитывать, так как основным источником информации о местоположении и элементах движения ПЛ были пассивные ненаправленные РГБ, а принцип работы ПВУ основывался на гипотезе, что ПЛ движется прямолинейно, равномерно и проходит через центры реагирующих буев в двух последовательно выставленных барьерах. Предполагалось также, что буи имеют одинаковую дальность обнаружения ПЛ, чего на практике не бывает -разброс их чувствительности достигал 27%. Ввиду отличия реальных условий от гипотетических возникали методические ошибки прицеливания.

Еще одной причиной ошибок прицеливания были неточности в определении момента начала реагирования очередных буев в барьерах, связанные с тем, что СПАРУ-55 связывалось с буями последовательно, при этом цикл перестройки составлял 110с. Интересно, что рекомен-дациюустановитьнаБе-12устройство, обеспечивающее одновременный контроль за всеми выставленными буями, содержал еще Акт госиспытаний. С этой целью был разработан и принят на вооружение панорамный приемоиндикатор ПП-1, который позволял не только мгновенно оп ределить время начала работы буя, но и его номер. Цикл перестройки ПП-1 составлял всего лишь 0,01 с. Однако это новшество не привело к желаемому повышению вероятности поражения ПЛ.

В соответствии с принятой методикой, при решении задачи поражения экипаж Бе-12 действовал в следующей последовательности. После обнаружения лодки каким-либо средством (с помощью РГБ, магнитометра, визуально, РЛС) относительно этой точки выставлялся охватывающий (перехватывающий) барьер из буев, причем точка первичного обнаружения обозначалась маркерным буем, работавшим в режиме непрерывного излучения. Начало работы какого-либо буя второго барьера фиксировалось, и экипаж самолета выполнял маневр с тем, чтобы пройти через маркер в направлении вступившего в работу буя, используя компасный режим СПАРУ-55. Так узнавали курс лодки. По продолжительности реагирования буев и отрезку пути между барьерами определялась скорость ее движения. В момент прохода второго буя, после ввода в ПВУ необходимых данных, оно переводилось в режим решения задачи поражения, и самолет с помощью автопилота выводился в расчетную точку, в которой открытие грузовых люков и сброс средств поражения производились автоматически. Задача могла решаться и в полуавтоматическом режиме. В этом случае летчик ориентировался по показаниям индикатора ПВУ. Следует отметить, что "при ручном управлении время маневра(особенно за счет увеличения крена на разворотах) можно было существенно сократить.

За 2-3 минуты до сбрасывания торпеды АТ-1* штурман Бе-12 задавал ей начальную глубину поиска. Этим самым подключалось электропитание от сети самолета к приборам управления и аппаратуре самонаведения. В момент сброса электросвязь с самолетом прерывалась, и питание переключалось на аккумуляторную батарею. При выходе торпеды из бомбоотсека выдергивались чеки парашютного кожуха и крыльев системы приводнения. После этого вытяжной парашют вводил в действие стабилизирующий купол, торпеда снижалась с вертикальной скоростью 100-120 м/с. На высоте 500 м раскрывался грузовой купол, и скорость снижения уменьшалась в два раза. В момент приводнения парашютная система отделялась, затем торпеда выходила на заданную глубину, а крылья отстреливались. Через 20-25 с аппаратура самонаведения и неконтактного взрывателя приходили в боевое состояние, и АТ-1 в поиске цели начинала описывать циркуляцию. Прием и излучение гидроакустических сигналов проводились поочередно верхним и нижним гидрофонами. Если уровень шумов ПЛ был достаточным, то включался пассивный канал и управлял торпедой в горизонтальной плоскости. При проходе на расстоянии от ПЛ до 5-6 м срабатывал неконтактный взрыватель.

Первое торпедометание с Бе-12 торпедой АТ-1 выполнено 14 мая 1966 г. экипажем 318-го ОПЛАП ДД. Полученный вскоре опыт привел к совершенно неожиданным выводам. Оказалось, что в случае, если скорость ПЛ не превышает 10 узлов, применение оружия после определения элементов ее движения на двух последовательно выставленных барьерах не дает никакого выигрыша в вероятности поражения по сравнению с торпедометанием в зону реагирующего буя без предварительного определения элементов движения лодки. Вероятность оставалась на уровне 0,13-0,24. Отклонения как в первом, так и во втором случае были значительными и превышали радиус действия акустической системы самонаведения торпеды, равный 300 м. Некоторого увеличения вероятности поражения ПЛ можно было добиться за счет серийного применения торпед и использования более мощных средств поражения, например, с ядерным зарядом.

* Первую советскую противолодочную торпеду АТ-1 приняли на вооружение в 1962г. О ее характеристиках читайте в "АиВ", №6"96, стр. 26.

Кабина радиста. Слева - вид по полету, справа - против полета

Кабина штурмана. Вид по полету

Теоретическое обоснование применения двух торпед произвели офицеры научно-исследовательского отдела 33-го Центра п/п-ки В.Ачкасов и О.Денисенко. Расчеты показали, что вероятность взаимных помех системам самонаведения торпед, сброшенных с линейным интервалом 600-700 м, невелика. Проведенные в июне 1969 г. исследовательские полеты со сбросом двух торпед АТ-1 на морском полигоне в районе мыса Чауда, подтвердили правильность расчетов, но практической реализации в авиации флотов эта идея не нашла. В середине 60-х гг. для Бе-12 и других противолодочных самолетов разработали и приняли на вооружение ядерную бомбу с подводным взрывом СК-1 "Скальп". Ее масса составляла 1600 кг, радиус поражения ПЛ достигал 800 м. На Бе-12 можно было подвесить одну такую бомбу и до 10 буев на наружные держатели - минимальное количество для уточнения гидроакустического контакта.

Рекомендации экипажам по применению СК-1 также разрабатывались в 33-м Центре. Основные положения проверялись в практических полетах. Одним из наиболее сложных оказался маневр для сброса СК-1 в случае получения контакта магнитометром. Для сброса бомбы нужно было иметь не только безопасную высоту, но и произвести маневр в кратчайшее время. Однако вероятность применения ядерного боеприпаса по "отписке" магнитометра, ввиду ее неопределенности, была крайне мала.

Как видно, возможности Бе-12 по решению противолодочных задач были невысокими. В той ситуации следовало бы в первую очередь повысить его возможности по поиску ПЛ, однако этого не произошло, и 29 марта 1967 г. принимается решение о модернизации бортового оборудования с задачей "увеличить вероятность поражения ПЛ в подводном положении в два раза". В этой связи обратили внимание на необходимость повышения точности измерения элементов движения ПЛ и выработки прицельных данных бортовыми системами. Но это общая схема, а в деталях она оказалась не столь простой и переросла в разработку довольно оригинальной поисково-прицельной системы, в состав которой вошли: СПАРУ-55; многоканальное УКВ-устройство "Нара"; ПВУ "Нарцисс" с анализатором цели; РЛС "Ини-циатива-2БН"; магнитометр АПМ-73С "Бор", а также необходимое для обеспечения работоспособности ППС бортовое оборудование, бомбовое и торпедное вооружение.

Основными источниками информации о подводной обстановке остались пассивные ненаправленные буи РГБ-НМ и РГБ-НМ-1, но для определения местоположения ПЛ и элементов ее движения непосредственно перед применением оружия Бе-12 оснастили 10 пассивными буями направленного действия РГБ-2. Они обеспечили пеленгование ПЛ и передачу этих данных на самолет с частотой 6-8 раз в минуту. Появилась возможность по нескольким парам пеленгов уточнить положение цели. Продолжительность работы РГБ-2 составляет 40-45 минут.

Для приема и первичной обработки радиогидроакустической информации, передаваемой РГБ-2 одновременно по 10 каналам, используется "Нара". Ос-новным связующим звеном новой поисково-прицельной системы ППС-12Н является ПВУ "Нарцисс" - векторный прицел с полуавтоматическим сопровождением цели, в состав которого входит цифровая вычислительная машина. Очень интересное и оригинальное устройство -анализатор цели. На его индикаторе отображаются сигналы от РГБ-2. Видя на экране отметки работающих буев, штурман по характеру разверток анализирует поступающую информацию. На самолетах Ил-38 и Ту-142, не оснащенных анализаторами целей, подобную задачу решают два оператора, используя два экрана.

Некоторые доработки провели и на бортовой РЛС. Она получила возможность взаимодействия с маяками-ответчиками буев РГБ-2 на дальности 25-30 км и прицеливания при бомбометании по надводным целям, а также синхронного полуавтоматического сопровождения ориентира при совместной работе с ПВУ "Нарцисс". Уже в процессе модернизации ППС решили снабдить Бе-12 более совершенным магнитометром АПМ-73С. Хотя он оказался не столь эффективным, как ожидалось, но в сравнимых условиях дальность обнаружения ПЛ с его помощью достигала 400 м. На самолет была установлена телекодовая аппаратура ПК-025, с помощью которой производился автоматический обмен информацией между самолетами в группе и с кораблями, включая пятнадцать типовых команд. Наличие на борту подобной аппаратуры дало возможность выполнять сброс оружия, используя данные другого самолета (вертолета, корабля).

Модернизация ППС продолжалась довольно долго. Только в апреге 1976 г. на вооружение был принят ее новый вариант, а еще через некоторое время приступили к оснащению им самолетов, получивших в связи с этим обозначение Бе-12Н. Новая аппаратура несколько повысила возможности экипажа по классификации контакта, но на тактику поиска субмарин практически не повлияла (барьеры буев, поля, зоны сплошного гидроакустического покрытия). А вот арсенал приемов поражения ПЛ существенно пополнился. В общем случае экипаж, обнаруживший с помощью буев РГБ-НМ подводную лодку, выявляет направление ее движения и перпендикулярно ее курсу выставляет барьер из шести-восьми РГБ-2. Получаемая информация воспроизводится на анализаторе цели, затем поступает в вычислитель. Для выработки прицельныхданных необходима информация от двух буев, промер базы между которыми осущест-вляется штурманом путем последовательного наложения электронного перекрестия РЛС на отметки маяков-ответчиков. Однако существует возможность применения оружия и по данным только от одного РГБ-2. В этом случае вынос точки прицеливания вводится вручную, а пеленг - от анализатора цели автоматически.

Взлеты группой на Бе-12 были характерны, в основном, для показов

Этим возможности ПВУ не исчерпываются. Как и в предыдущей версии ППС, имеется возможность выработки прицельных данных по информации от двух разновременно реагирующих буев РГБ-НМ, выставленных в двух барьерах. Специальный режим обеспечивает прицеливание по двум последовательным контактам, установленным с помощью магнитометра.

На учениях и боевой службе

Практически сразу после поступления на флоты Бе-12 стали широко привлекаться на различные учения, где отрабатывалось их взаимодействие с разнородными противолодочными силами. Постепенно экипажи постигали сложное искусство поиска и слежения за ПЛ. По мере приобретения навыков началась боевая служба - полеты с задачей поиска, а при необходимости слежения за обнаруженными субмаринами. Боевая служба решалась в двух основных формах. Экипажи могли находиться на аэродроме в высокой степени готовности к вылету для восстановления потерянного контакта с ПЛ, уточнения ее места, продолжения слежения и др. Это был так называемый "поиск по вызову". Однако наибольший интерес представляли самостоятельные или совместные с разнородными силами ПЛО флота действия, в том числе и в поисковых противолодочных операциях.

В первые годы поиск ПЛ производился преимущественно с помощью бортовых РЛС. Различного рода специалисты предлагали "теоретически грамотно" использовать РЛС: работать в так называемом "паузном" режиме, периодически выключая высокое напряжение на тра-верзных курсовых углах. Единственное, что объединяло все эти рекомендации, -неприемлемость для практической реализации, поскольку те, кто их предлагал, не знали особенностей РЛС. Применять же для обследования обширных морских просторов РГБ, имевшиеся в ограниченном количестве и довольно дорогие, не представлялось возможным. Экипажу для боевой подготовки выделялось 26-30 буев в год, а остальные поступали с заводов на пополнение боекомплекта. Пришлось применять для первичного поиска ПЛ магнитометрические средства, хотя их низкая эффективность не вызывала сомнений. Магнитометричес-кий поиск выполнялся на высоте 60-70 м.

что исключало использование автопилотов. Длительный полет на малой высоте утомителен, и в авиацию флотов поступили указания ограничить его продолжительностью 45 мин, после чего в течение 15 мин производить полет на большой высоте. Развороты для изменения направления поисковых галсов рекомендовалось выполнять с набором высоты.

Предложения по тактике действия Бе-12 разрабатывали не только в 33-м Центре, но и в авиации флотов. В частности, большой вклад внесли М.Ишме-тьев, В.Воробьев, Н.Саркисьянс, Р.Калмыков, Водоладов и многие другие.

В начале 1968 г. научно-исследовательскому отделу 33-го Центра поставили задачу разработать рациональную тактику применения Бе-12 для поиска подлодок в Средиземном море с базированием на одном из аэродромов Объединенной Арабской Республики (ОАР). К работе привлекли и другие организации. В частности, гидрометеообсерва-тория ЧФ занималась оценкой дальности обнаружения ПЛ авиационными буями применительно к гидрологическим условиям Средиземного моря. Проведенные там с помощью БЭСМ-4 расчеты оптимизма не внушали, т.к. дальность обнаружения ПЛ получилась 0,2-0,8 км. Столь скромный показатель объяснялся наличием слоя температурного скачка на глубине 40-50 м. Поскольку заглубление гидрофонов буев составляло 20 м, то обнаружение ПЛ, следовавших под слоем скачка, представлялось проблематичным. И хотя некоторые РГБ имели кабели гидрофонов длиной до 50 м, это не влияло на эффективность. В июне результаты проработки доложили командующему авиации ВМФ, который в них мало что понял. Впрочем, было очевидно - акция имеет скорее политические цели. Вместе с тем, базирование самолетов в ОАР помогло бы командованию 5-й эскадры ВМФ, находившейся в Средиземном море.

В марте 1968 г. состоялось соглашение между СССР и ОАР о временном размещении на ее территории группы из шести Ту-16Р морской авиации для ведения воздушной разведки над Средиземным морем в интересах обеих стран. По первоначальному плану численность этого подразделения определили в 130 человек. Оно получило название ЭО-й отдельной дальневосточной эскадрильи особого назначения (ОДРАЭОН). Впоследствии в дополнение к Ту-16Р прибыли два самолета радиоразведки АН- 12РР, а 19 августа 1968 г. - три Бе-12 из 318-го ОПЛАП Л Л Старшим группы был назначен п/п-к В.И.Голян, командирами экипажей - м-р Федоров и к-н Пастернак. Бе-12 с опознавательными знаками ОАР проследовали через Венгрию, Югославию и произвели посадку на аэродроме Каир-Вест. Впоследствии их перебазировали на аэродром курортного городка Мерса-Матрух. Штаб авиации ВМФ определил, что Бе-12 будут выполнять по 3-4 самолето-вылета в неделю продолжительностью по 3-4 ч каждый. Поиск ПЛ следовало производить парами или полным составом группы, буи применять для классификации контакта, полученного при магнитометрическом поиске, который считался основным, и для слежения за обнаруженной ПЛ.

Пользуясь бесконтрольностью со стороны штаба авиации ВМФ, командование 5-й эскадры стало широко привлекать Бе-12 на различного рода тактические учения в ущерб решению ими основной задачи, и за короткое время было израсходовано 963 буя (произведено 38 самолето-вылетов), что никак не входило в планы штаба. За эти вылеты получено два первых обнаружения ПЛ. Слежения велись в течение 1 ч 37 мин и 0 ч 48 мин.

В марте-апреле 1970 г. группа была задействована в самых крупных в истории ВМФ СССР маневрах "Океан". Она приняла участие в крупной поисковой операции с привлечением противолодочных крейсеров "Москва", "Ленинград" (28 вертолетов Ка-25ПЛ), 20 надводных кораблей и 10 ПЛ. По составу участвующих сил и масштабам подобная операция проводилась впервые. Поиск осуществлялся во всех предполагаемых районах боевого патрулирования атомных ракетных подводных лодок США, включая Сардинское, Ионическое, Египетское, Ливийское и Критское моря. В итоге всеми силами были обнаружены четыре ПЛ. Участие экипажей Бе-12 оказалось довольно скромным. Отряд произвел 10 самолето-вылетов с аэродрома Мерса-Матрух, выставив 360 буев. За обнаруженной на одном из барьеров ПЛ слежение продолжалось в течение 12 мин, после чего контакт передали корабельным вертолетам.

Взлетает Бе-12 авиации ТОФ

Совершает посадку Бе-12 из 318-го ОПЛАП ДД. Донузлав, 70-е гг.

Экипажи Бе-12 других флотов первых обнаружений ПЛ добились: на ТОФ -в 1968 г. в Японском море, на Балтике -в 1973 г. (визуально), на СФ - в 1974 г. В 1972 г. штаб авиации ВМФ предпринял неуклюжую попытку повысить эффективность магнитометрического поиска. В части направили указание о снижении высоты полета Бе-12 при такой работе до 25 м. Это ничего, кроме неприятностей, принести не могло: ширина полосы поиска расширялась незначительно, а вероятность катастрофы самолета в случае отказа двигателя существенно повышалась. В авиации флотов поступившее указание дружно проигнорировали. Дело в том, что в тот период автоматическое флюгирование винта в случае отказа АИ-20Д обеспечивалось только при положении РУД, соответствовавшем 0,7 номинальной мощности двигателя. Но в этом случае скорость полета самолета достигала 430-450 км/ч, что затрудняло применение магнитометра и приводило к повышенному расходу топлива. В обычных условиях (на высотах 70-100 м) полет производился на скорости 300-320 км/ч.

Когда хотят показать эффективность действия противолодочной авиации на боевой службе, то в качестве основного критерия принимают количество обнаружений иностранных ПЛ. Однако условия поиска и районы его проведения различны, периодичность и систематичность полетов на поиск неодинаковы, частота появления в пределах обследуемых акваторий иностранных ПЛ случайна и т.д. Это позволяет заключить, что количество обнаруженных ПЛ - не критерий, а статистический показатель. До 1975 г. экипажи Бе-12 авиации Северного и Тихоокеанского флотов обнаруживали по три-четыре ПЛ в год. Обстановка на Черном море и Балтике была иной. И тем не менее, на ЧФ в 1976 г. зафиксировали одно обнаружение иностранной ПЛ. Но когда шумы этой подлодки, записанные на бортовой магнитофон МС-61, направили для анализа в один из институтов ВМФ, то получили неожиданные результаты. Из заключения следовало: на звуконосителе(проволоке)записаны шумы, но принадлежащие гармоническим составляющим шума винтов Бе-12. Подозрения о том, что такие шумы принимаются за принадлежащие ПЛ, возникали и раньше.

Экипажу Бе-12 было трудно правильно классифицировать контакт из-за высокого уровня шумов в кабине и конструктивных недоработок радиогидроакустической системы. Сущность последних состоит в следующем: РГБ-НМ осуществляли прием подводных шумов в диапазоне частот 5-10 кГц и без существенных искажений передавали их по радиолинии на самолет, а СПАРУ-55 преобразовывало их в полосу частот 250-300 Гц, что приводило к разрушению первичной информации и возникновению искажений. Следует сказать, что штурманы, обладавшие музыкальным слухом, как например, п/п-к А. Походзило, впоследствии "Заслуженный военный штурман СССР", умели в хаосе шумов различать нужные.

Начиная с 1975 г. количество обнаружений иностранных ПЛ вблизи побережья стало возрастать. Об истинных причинах подобного явления можно только гадать. Обычно его объясняют более широким применением буев. Действительно, поставки буев промышленностью увеличились с 5000 в 1967 г. до 10760 - в 1977 г. и достигли максимума в 1983 г. (16000 РГБ-НМ и НМ-1), причем до 50% их расходовалось на боевую службу. За 15 лет (с 1968 по 1982 гг.) экипажи Бе-12 получили 110 обнаружений иностранных ПЛ. 83 из них приходятся на 1977-1982 гг., когда проводились более-менее регулярные вылеты на боевую службу. Согласно отчетам, 25 ПЛ (30%) обнаружено в результате магнитометрического поиска.

Практически за всеми обнаруженными ПЛ выполнялось слежение различной продолжительности. Имеется возможность проанализировать его качественные показатели, допуская, что донесения экипажей самолетов и записи бортовых средств объективны. При таких условиях на час слежения за ПЛ, скорость которой не превышает 10 узлов (18,5 км/ч), экипажи расходовали до 40 буев (до 1970 г.). В последующие годы средний часовой расход снизился на 25-30% и составил 28-30 буев. В это количество включены и РГБ, которые выставляли охватывающим барьером относительно точки первичного обнаружения. Периодичность гидроакустических контактов составляла 15-30 мин. Час слежения, без учета расхода топлива, обходился в 22,4-30 тыс. руб. (стоимость буя РГБ-НМ - 800 руб.). Для сравнения: час слежения самолетами Ил-38, расходовавшими за это время до 20 буев, составлял 64 тыс. руб.

О вкладе экипажей Бе-12 в боевую службу свидетельствует следующий показатель. Налет авиации флотов на боевую службу по поиску ПЛ с 1965 по 1981 гг. составил 81124 ч, из которых 37205 ч - на Бе-12. Последний пик активности применения Бе-12 на боевой службе приходится на 1989-1990 гг. Так, в 1989 г. экипажи Бе-12 обнаружили 29 иностранных ПЛ. Степень достоверности осталась на прежнем уровне. После 1991 г. количество вылетов на боевую службу резко сократилось.

В целом самолет-амфибия, не отличавшийся передовыми технологиями, относится к изделиям, о которых принято говорить: "неладно скроен, но крепко сшит". В пользу подобного утверждения свидетельствуют статистические данные за 15 лет эксплуатации Бе-12 в авиации ВМФ (с 1974 по 1988 гг.). Налет за этот период составил более 182 тыс. ч при очень малом числе летных происшествий.

Первая катастрофа произошла 26 сентября 1969 г. на ТОФ. Ночью в сложных метеоусловиях при выходе на бомбардировочный полигон после полета по маршруту в море Бе-12 врезался в сопку Авачинскую (высотой 2750 м) вблизи Петропавловска-Камчатского вследствие неудовлетворительной организации руководства полетами. Вторая катастрофа Бе-12 не была летным происшествием в полном смысле. 3 июня 1971 г. на полевом аэродроме Леонидово командир отряда, военный летчик 1 класса м-р А.И.Жиляков при переруливании с одного места стоянки на другое допустил спешку, не включил систему торможения и не проверил работоспособность управления хвостовым колесом. В результате амфибия развернулась на 180° и столкнулась с рядом стоящим самолетом. Обе машины сгорели, экипаж рулившего Бе-12 получил ожоги различной степени, а штурман скончался в госпитале.

20 июля 1972 г. днем в штиль потерпел катастрофу Бе-12, пилотируемый командиром 318-го ОПЛАПДД летчиком 1 класса п/п-ком Ф.И.Пономаренко. Выполнив упражнение по слежению за ПЛ, командир принял решение произвести тренировочные посадку и взлет в море в районе боевой подготовки флота. После плавного приводнения на пробеге при скорости 160 км/ч самолет носовой частью столкнулся с плавающим предметом и получил пробоину. Под напором поступающей воды передняя кабина разрушилась, самолет перевернулся. Четыре члена экипажа погибли, а воздушного радиста, находившегося в кормовой кабине, подобрали моряки. В районе происшествия была найдена полузатопленная дубовая колода для разделки мяса, окованная железными обручами.

Известны и другие случаи разрушения лодки Бе-12. Впервые это произошло еще в период испытаний амфибии. Экипажу летчика-испытателя Е.Никитина предстояло определить предельное состояние водной поверхности, при котором возможно взлететь. Машина то зарывалась носом в воду, то поднималась на гребень волны. Обнаружив, что вода стала заполнять один из отсеков, Никитин мгновенно прервал взлет, что позволило предотвратить катастрофу. В 1970 г. из-за повреждения корпуса лодки потерпел аварию самолет, пилотируемый командиром эскадрильи авиации СФ м-ром Шатило. Посчитали, что причиной послужило бревно, которое, правда, обнаружить не удалось. На том же флоте 27 августа 1984 г. Бе-12 к-на Наумова при взлете с воды стал резко уклоняться вправо, затем развернулся влево на 160° сначала с правым, а затем с левым креном и отбил оба поплавка. В лодку начала поступать вода, но Бе-12 осталась на плаву. Гипотетическое "бревно" и на этот раз не обнаружили.

Однако существовала и другая точка зрения относительно причины разрушения корпуса лодки. Полагали, что самолет при взлете с воды иногда попадает в зону неустойчивого глиссирования, что приводит к огромным вибрационным перегрузкам и повреждению конструкции. Исследования динамики взлета Бе-12 с воды показали, что при высоте волны порядка метра корпус лодки испытывает нагрузки, в 3-4 и более раз превосходящие нагрузки при взлете с бетонированной ВПП. Наибольшие перегрузки испытывает носовая и кормовая части лодки. Так, при смешанной волне (одновременное воздействие ветровой волны и зыби) высотой до метра вибрационные перегрузки в носовой части достигали 6, а в кормовой 4 единиц, а ударные перегрузки превышали эти значения в 1,5-1,7 раза. Это приводит к весьма неприятным последствиям: обрыву электропроводки, нарушению герметичности волноводов РЛС, ухудшению свойств амортизаторов.

Еще одна катастрофа Бе-12 авиации ВМФ произошла на ЧФ 9 августа 1974 г. с экипажем командира эскадрильи 318-го ОПЛАП ДД летчика 1 класса м-ра В.К.Денисова в ходе контрольного учения флота. Полет выполнялся на высотах 300-900 м с задачей наблюдения за ПЛ. В 4 ч 50 мин с борта Бе-12 доложили о месте нахождения лодки, всплывшей в надводное положение. В 4 ч 54 мин последовал второй доклад, и через 50 с экипаж начал выполнение левого разворота, в ходе которого самолет столкнулся с водой. С другого Бе-12 (командир Строкин) обнаружили горящую машину Денисова в 4 км от ПЛ, однако амфибия быстро затонула на глубине 1700 м. Экипаж и находившийся на борту пассажир погибли. Спасателям удалось обнаружить лишь труп второго пилота л-та Летягина, 2 парашюта, подкрыльевой поплавок, законцовку крыла и некоторые другие мелкие детали. Наиболее вероятной причиной катастрофы посчитали отказ левого двигателя. Он подлежал проверке представителем промышленности по рекламационному акту, что сделано не было.

Постепенно Бе-12 старели, выработавшие ресурс машины списывались. В 1992 г. начался вывод самолетов этого типа в резерв, откуда обычно не возвращаются. Приказом ГК ОВС СНГ №144-1992 г. Бе-12 был снят с вооружения. Но он остается в строю. По состоянию на середину 1996 г. в частях авиации ВМФ России числилось немногим более 40 бериевских амфибий, и еще 22 находились в резерве. В свое время Бе-12 пришел на смену Бе-6, а ему замены не нашлось.

Случается, что поведение коптера на контроллере APM не всегда бывает хорошим. Это проявляется в режимах, использующих компас. Причиной является наводка от силовых проводов питания и моторов. Влияние можно исключить, если использовать внешний компас.

Использование внешнего компаса упрощает задачу расположения силовых проводов на борту коптера. Внешний компас может быть как отдельный, так и совмещен с модулем GPS. Большинство пилотов ставят совмещенную плату. Для GPS модуля это тоже плюс, т.к. при выносе его положение становится выше всех других компонентов коптера, что уменьшает помехи. О модулях GPS с компасом на плате писал ранее в статье « ». Как ориентировать внешний компас — написано в статье « ». Далее останется только разобраться, как производится подключение к контроллеру APM.

Один из примеров установки внешнего компаса можно почитать в Александра Шанталова. Вот как получилось у него:

Аналогичное решение есть еще на буржуйском :

Вот так получилось у Александра Киселева:

Теперь мы имеет представление, что должно получиться. Далее разберемся с подключением.

В подключении ничего сложного нет. Стоит только понять разницу между платой APM версии 2.5.2 и 2.6. На плате 2.5.2 компас обычно запаян, а на плате 2.6 микросхемы нет (но китайцы плату могут назвать как угодно, поэтому смотрим на наличие/отсутствие компаса).

Если у вас плата с запаянным компасом, то его необходимо отключить. Отключение производится перерезанием шейки между прямоугольными площадками. Если плата без запаянного компаса, то можно ничего не делать.

Производим подключение согласно схеме:

Нельзя, чтобы провода были слишком длинными, т.к. может наблюдаться проблема зависания шины I2C. Рекомендуется делать провод не больше 20см. Дальше крепим внешний компас (или совмещенную плату с модулем GPS) в удобном месте и ориентируем по осям как можно точнее! Про правильную ориентацию компаса написано в статье « ». Проще всего его расположить также, как он расположен на плате APM 2.5.2 (см. ссылку выше).

Хотя модуль физически и один, сенсора там два.
Один сенсор — это определение координат. Это антенна спутникового модуля с чипом Ublox (или что там у вас стоит). По нему коптер знает где он находится (спутниковые координаты). Этот сенсор — как ни вращай — координаты будут определяться. Лучше или хуже (точнее или быстрее/медленнее) — но будет, хоть антенной вниз.
А вот в какую сторону лететь — это коптер будет знать при условии корректно работающего компаса, который часто расположен на том же модуле, даже запаян на одной плате. Но суть — отдельный сенсор, который чувствителен к правильной установке.
А вариантов разводки платы и размещения микросхемы компаса на ней — существует превеликое множество и ограничено только китайской фантазией. И однозначно утверждать как правильно ставить модуль можно только когда увидишь микросхему компаса на модуле.
Проверить без разборки просто. Вы же знаете, где у вас какая сторона света? Поставьте коптер мордой например на восток и включите коптер, соедините его с МП. В МП дожно показать именно на восток, а не на север. Стороны света могут «крутиться» благодаря показаниям акселерометра, но коптер при включении ВСЕГДА показывает на север, если у него не работает компас.

Если вы нашли ошибку на странице, то нажмите Shift + Enter или , чтобы уведомить нас.

Вес радиолокационной станции – 334 кг.

Как уже отмечалось выше, основные элементы ППС объединены с помощью цифровой вычислительной машины ЦВМ-264, разработанной коллективом под руководством В.И. Ланердина. Машина спроектирована на основе ЦВМ «Пламя-ВТ», созданной в свое время НИИ-1? ГКРЭ для автоматизации решения задач самолетовождения. На Ил-38 ЦВМ вырабатывает сигналы, поступающие на автопилот для управления полетом, рассчитывает места и элементы движения подводной лодки по данным буев различного типа, управляет перекрестиями РЛС при автосопровождении целей, ведет учет средств поиска и поражения, открывает грузовые люки перед применением сбрасываемых средств, вычисляет вероятность поражения цели заданным оружием и др, ЦВМ-264 является специальной управляющей одноадресной машиной с двоичной системой счисления. Быстродействие машины по современным понятиям невелико и составляет лишь 62 тыс. операций типа сложение.

Надежность отдельных элементов ЦВМ-264 оказалась низкой, на доводку и повышение работоспособности ее потрачено много времени, сил и средств без особого успеха.

Вес машины с рамой достигает 450 кг.

На сигнальное табло, расположенное на приборной доске летчиков, ЦВМ выдает сигналы: «Набери заданную высоту»; «ЦВМ неисправна» и др.

Блок связи преобразует информацию, поступающую из ЦВМ в РЛС, к виду, который может быть реализован исполнительными устройствами.

Штанга магниточувствительного блока магнитометра АПМ-60

На самолетах Ил-38 установлен авиационный магнитометр АПМ-60, который впоследствии заменили на АПМ-73С. Его магниточувствительный блок размещен в хвостовой балке. Предполагалось, что сигналы, поступающие от магнитометра, будут вводиться и обрабатываться в ЦВМ. Реализовать идею не удалось, и электрических связей магнитометр с системой «Беркут» не имеет. В зависимости от поставленной задачи самолет Ил-38 используется в поисково-ударном, поисковом или ударном вариантах загрузки средствами поиска и поражения ПЛ. В поисковом варианте имеется возможность подвесить на самолет 216 буев РГБ-1; в поисково-ударном – 144 РГБ-1, 10 РГБ-2, 3 РГБ-3, две торпеды. Имелись варианты с подвеской ядерных бомб и мин. Ударный вариант самолета ввиду тактической бесполезности никогда не принимался во внимание.

Хотя вариантами загрузки предусматривалась подвеска противолодочных бомб, все прекрасно понимали, что они не являются эффективным средством поражения, и основные надежды связывали с разрабатываемой для Ил-38 торпедой ПЛАТ-2 (АТ-2), которая должна была заменить торпеду АТ-1М. Это акустическая самонаводящаяся в двух плоскостях электрическая торпеда. Она имела ряд конструктивных особенностей, характеризующих ее как очередной этап в развитии отечественного авиационного противолодочного оружия.

Торпеда снабжена многокупольной парашютной системой: сначала открывались два купола по 0,6 кв. м. каждый, а затем тормозной парашют площадью 5,4 кв. м.

После приводнения и выхода на заданную глубину начального поиска торпеда выходит на поисковый круг. В АТ-2 используется программный поиск по цилиндрической спирали с переменным шагом, уменьшающимся по глубине. Изменение шага спирали на первом участке траектории происходит за счет автоматического изменения дифферента торпеды от начальной величины (11 град.) до нуля. Таким образом обеспечивается полный просмотр всего возможного диапазона глубин. Поиск цели производится на скорости 23 узла (42,5 км/ч).

Автоматический самописец магнитометра АПМ-60

Система самонаведения торпеды работала циклами, причем до 35% времени затрачивалось на активный режим. При захвате цели по отраженному эхо-сигналу аппаратура системы самонаведения переключалась на активный режим наведения. Если же уровень принятых от цели шумов превышал уровень срабатывания гидроакустического канала в режиме приема, цикличность работы системы самонаведения прерывалась и она наводилась на цель пассивным каналом системы.

При потере цели по истечении определенного времени, зависящего от режима наведения и курсового угла цели, аппаратура переключается в режим повторного поиска в активно-пассивном режиме.

Длина торпеды АТ-2 – 5200 мм, диаметр – 534 мм, вес 1030 кг, глубина хода – до 400 м.

Почти с годовым отставанием 10 марта 1963 г. ППС «Беркут» в неполной комплектации (без ЦВМ) установили на самолет, отработку отдельных блоков продолжали на Ил-18. На этом этапе произведено 147 полетов с налетом 369 ч только на Ил-38. Столь большой налет свидетельствует, что потребовалось много усилий и немало нервов. Существенную помощь оказывал экипаж майора А. П. Шарапова из 33 Центра.

После установки на самолет ЦВМ испытания продолжили в соответствии с приказом главкома ВВС, председателя ГКАТ и председателя ГКРЭ от 15 сентября 1964 г. К ним приступили 2 октября и закончили 28 ноября. Произведено 19 полетов с налетом 61 ч 40 мин. Они показали, что ППС далека от состояния, обеспечивающего выполнение заявленных технических и летно-тактических характеристик. Практически в каждом полете происходили отказы ЦВМ, которая объединяла основные элементы системы «Беркут».

Пульт управления сбрасыванием

Сокращению сроков испытаний на данном этапе существенно способствовал разработанный офицерами 33 Центра В. В. Ачкасовым, О. К. Денисенко и Магадеевым гидроакустический полигон – моделирующее устройство, имитирующее работу ненаправленных и направленных буев, обеспечивающее отработку задачи поражения по цели на сухопутном полигоне с применением бомб. Создателей устройства, сэкономившего много времени и средств, поощрили «по-царски», выдав по триста рублей каждому, а также и примкнувшим к ним.

Государственные совместные испытания самолета Ил-38 проводились в соответствии с поручением заместитель председателя Совета Министров СССР Л. В. Смирнова от 8 февраля 1965 г. и совместным решением ВВС, МАП и МРП, принятым 3 марта 1965 г.

Они начались 6 июля и закончились 15 декабря 1965 г. В процессе их произведено 87 полетов с налетом 348 ч 43 мин, в том числе на доводку системы «Беркут» и отработку магнитометра АПМ-60.

На этот этап самолет передали с двумя сотнями замечаний. Бригаду НИИ ВВС, ответственную за испытания, возглавлял инженер-полковник О. А. Вороненко, ведущий инженер по противолодочному комплексу инженер-подполковник А. К. Кирюхин.

Полеты выполняли ведущие летчики: старший летчик-испытатель 3 Управления 8 ГНИКИ ВВС полковник С. М. Сухинин, старший летчик-испытатель того же Управления инженер-подполковник Кузьменко; от ОКБ-240 ГКАТ ведущий летчик-испытатель В. К. Коккинаки; летчик-испытатель А. Н, Тюрюмин.

Конечно, результаты отработки ППС меньше всего зависели от летчиков, чего нельзя сказать о инженерах и штурманах-испытателях подполковниках Москаленко, Мелехина, Воронова, майора Лицмана, на которых пришлась основная нагрузка.

В Акте по результатам испытаний несмотря на значительные затраты времени отмечено довольно много существенных недостатков. Только в перечень № 1 (подлежащие устранению до начала эксплуатации самолета) вошло 96 пунктов.

Наработка ППС «Беркут» на отказ по данным испытаний составила 6 ч. Отмечен высокий уровень шумов в кабине экипажа, существенно превышавший установленный ОТТ-58. Факт достаточно неприятный для самолета с большой продолжительностью полета, и вероятнее всего это явилось следствием переноса крыла, а следовательно, и двигателей вперед на 3 м. Причем на рабочих местах летчиков уровень шумов оказался существенно ниже, чем у операторов,

Можно ли по показаниям магнитометра определить вес (массу) объекта?

Можно определить приблизительный размер, форму, и глубину объекта. А вес нельзя. Дело в том, что для определения массы объекта надо знать о нём некоторые вещи:

  • намагниченность объекта, а она меняется, в зависимости от марки стали, в очень широких пределах;
  • точную форму предмета. Имеются рассчитанные формулы лишь для однородных предметов простой формы – шар, цилиндр, параллелепипед и т.д. А любой искусственный предмет имеет сложную форму, и к тому же часто неоднороден, т. е. состоит из разных деталей, имеющих свои, особые свойства;

Отсутствие этой необходимой информации и не позволяет вычислить массу. Простой пример: магнитное поле от гири весом 1 кг в несколько раз сильнее, чем от 1 кг гвоздей из той же стали, насыпанных в стеклянную банку. А если рассыпать эти гвозди в линию, то поле опять изменит и форму, и величину. Объясняется это тем, что каждый гвоздь, являясь отдельным магнитом, имеет свой положительный и отрицательный полюс. Складываясь в банке хаотично, эти магнитики друг друга компенсируют, «гасят» общее поле, чего не происходит в монолитной гире. Кстати, именно поэтому суммарное поле от танковых гусениц зачастую небольшое – каждый трак намагничен по другому в процессе изготовления. А вот пушечный ствол – это монолит, и поле от него в десятки раз сильнее.

Однако размер, форма и глубина объекта – вполне достаточная информация для решения – копать или не копать! Грубо говоря, гвоздь от каски вы всегда отличите, а каску – от тяжёлой техники

Бывают ли немагнитные танки?

В последнее время среди поисковиков распространилась легенда, что во время Второй мировой войны у немцев были танки, частично сделанные из титана, и эти танки немагнитные.
Во-первых, никто танков из титана пока не находил. Во-вторых, если даже такие части танка, как гусеницы, колёса, и даже броневые листы сделать из титана, то двигатель, механизмы, пушка всё равно будут стальные, а это огромные магнитные массы и сильнейшие поля, которые «берутся» магнитометром с большого расстояния.

Отличаются ли показания магнитометра на воздухе и под землёй (под водой, бетоном, льдом и т. д.)?

Нет, не отличаются, т.к. естественных преград для магнитного поля не существует. Именно поэтому все испытания магнитометров , в отличие от металлоискателе й, можно проводить на воздухе или на поверхности земли.

Почему не встраиваете в ваш магнитометр систему GPS?

Посмотрим, для чего используются магнитометры . Во-первых, для поисков железных объектов, 90% которых ищутся «по наводке», т.е. место определено заранее, требуется лишь подтвердить, объект есть или объекта нет. Тут встроенный GPS не нужен, достаточно карты или деревенского пастуха, который «мальцом с башни танка в речку прыгал!».

Во-вторых, магнитометр нужен при съёмочных работах, когда необходимо построение магнитных карт. Но тут GPS тем более не нужен, поскольку на этом виде работ необходима точность привязки не хуже 20-30 см, а GPS декларирует в лучшем случае 3-5 метров, а во многих случаях «отскоки» до 15-20 метров!

Можно конечно, вставить с позиции «чтобы было!», но дело в том, что дополнительное усложнение любого прибора ведёт к увеличению его веса, энергопотребления, и, самое главное, к снижению его надёжности.

Какой магнитометр самый чувствительный?

Самые чувствительные т.н. криогенные магнитометры , построенные на явлении сверхпроводимости. Их чувствительность достигает 0, 0001 нТл. Однако в практике полевых работ чувствительность выше 1 нТл не применяется, поскольку выделить при полевых работах, а тем более при поисковых, аномалию менее 5-10-20 нТл практически невозможно – слишком много помех. Обычно производители полевых приборов декларируют чувствительность до 0,1 нТл, но такая чувствительность нужна лишь при специальных видах научных работ.

Какую аномалию даёт танк?

Аномалия от танка, как и от любого намагниченного предмета, сильно зависит от расстояния. Поэтому величина поля, скажем, 10000 нТл может быть получена и от танка, и от гвоздя, стоит поднести его поближе. Поэтому лучше всего ориентироваться не по цифрам, а по размерам и форме аномалии: аномалия от танка большая по площади, это чаще всего вытянутое пятно на поверхности размером от десяти-пятнадцати метров, если танк на глубине 3-5 метров; и размером до 3-4 метров, если он на глубине 8-10 метров. В первом случае интенсивность аномального пятна резко возрастает к центру, во втором это изменение выражено значительно слабее.

Можно ли пешеходный магнитометр использовать для поисков магнитных предметов под водой?

– Да. Летом можно использовать его с немагнитной деревянной лодки (резиновая сильно «крутится», что создаёт помехи), но лучше проводить исследования водоёмов зимой по льду.

Что удалось найти с помощью вашего магнитометра «Магнум»?

По сообщениям владельцев наших приборов за 4 года его производства найдено порядка 12 единиц тяжёлой техник (3 из них по частям, взорванных) и большое количество более мелких объектов.