Плазма или ЖК что лучше? Устройство и принцип работы газоразрядных дисплеев Плазменный экран принцип работы.

Коммерческий цикл любого изобретения не вечен, и производители, запустившие массовое производство LCD-мониторов, готовят следующее поколение технологий отображения информации. Устройства, которые придут на смену жидкокристаллическим, находятся на разных стадиях развития. Некоторые, такие, как LEP (Light Emitting Polymer -- светоизлучающие полимеры), только выходят из научных лабораторий, а другие, например на основе плазменной технологии, уже представляют собой законченные коммерческие продукты.

Размер всегда был главным препятствием при создании широкоэкранных мониторов. Мониторы размером больше 24 дюймов, созданные с использованием ЭЛТ технологии, слишком тяжелые и громоздкие. ЖК-мониторы -- плоские и легкие, но экраны, размер которых больше 20 дюймов, обладают слишком высокой себестоимостью. Плазменная технология нового поколения идеально подходит для создания больших экранов. Она позволяет выпускать плоские и легкие мониторы глубиной всего 9 сантиметров. Поэтому, несмотря на большой экран, они могут быть установлены в любом месте -- на стене, под потолком, на столе.

Благодаря широкому углу обзора изображение видно с любой точки. И что самое главное, плазменные мониторы способны передать цвет и резкость, которые раньше были недостижимы при таком размере экрана.

Идея использования газового разряда в средствах отображения не нова. Подобные устройства выпускались много лет назад в СССР в Рязани в НПО «Плазма». Однако размер элемента изображения был достаточно велик, так что для получения приличного изображения было нужно создавать огромные табло. Изображение было некачественным, передавалось мало цветов, устройства были крайне ненадежными.

За рубежом исследования и разработки в области этой технологии начались еще в начале 60-х годов. Еще лет пятьдесят назад было открыто одно интересное явление. Как оказалось, если катод заострить на манер швейной иглы, то электромагнитное поле в состоянии самостоятельно «выдергивать» из него свободные электроны. Необходимо только подать напряжение. По такому принципу работают лампы дневного света. Вылетающие электроны ионизируют инертный газ, чем заставляют его светиться. Трудность заключалась лишь в отработке технологии получения таких игольчатых матриц. Ее решили в Университете штата Иллинойс в 1966 году. В начале семидесятых годов компания Owens-Illinois довела проект до коммерческого состояния. В восьмидесятых годах эту идею пытались воплотить в реальный коммерческий продукт компании Burroughs и IBM, но тогда еще безуспешно.

Надо сказать, что идея плазменной панели появилась вовсе не из чисто научного интереса. Ни одна из существовавших технологий не могла справиться с двумя простыми задачами: добиться высококачественной цветопередачи без неизбежной потери яркости и создать телевизор с широким экраном, чтобы он при этом не занимал всю площадь комнаты. А плазменные панели (PDP), тогда только теоретически, подобную задачу как раз могли решить. Первое время опытные плазменные экраны были монохромными (оранжевыми) и могли удовлетворить спрос только специфических потребителей, которым требовалась, прежде всего, большая площадь изображения. Поэтому первую партию PDP (около тысячи штук) купила Нью-йоркская фондовая биржа.

Направление плазменных мониторов возродилось после того, как стало окончательно ясно, что ни ЖК-мониторы, ни ЭЛТ не в состоянии недорого обеспечить получение экранов с большими диагоналями (более двадцати одного дюйма). Поэтому лидирующие производители бытовых телевизоров и компьютерных мониторов, такие, как Hitachi, NEC и другие, вновь вернулись к PDP. В область плазменной технологии также обратили свои взоры и корейские компании «второй мировой линии», среди которых, например, Fujitsu, производящая более дешевую электронику, что тут же внесло остроту конкуренции. Сейчас Fujitsu, Hitachi, Matsushita, Mitsubishi, NEC, Pioneer и другие производят плазменные мониторы с диагональю 40 дюймов и более.

Принцип работы плазменной панели состоит в управляемом холодном разряде разреженного газа (ксенона или неона), находящегося в ионизированном состоянии (холодная плазма). Рабочим элементом (пикселем), формирующим отдельную точку изображения, является группа из трех субпикселей, ответственных за три основных цвета соответственно. Каждый субпиксель представляет собой отдельную микрокамеру, на стенках которой находится флюоресцирующее вещество одного из основных цветов (см. приложение Л, рис. 12). Пиксели находятся в точках пересечения прозрачных управляющих хром-медь-хромовых электродов, образующих прямоугольную сетку.

Для того, чтобы «зажечь» пиксель, происходит приблизительно следующее. На питающий и управляющий электроды, ортогональные друг другу, в точке пересечения которых находится нужный пиксель, подается высокое управляющее переменное напряжение прямоугольной формы. Газ в ячейке отдает большую часть своих валентных электронов и переходит в состояние плазмы. Ионы и электроны попеременно собираются у электродов, по разные стороны камеры, в зависимости от фазы управляющего напряжения. Для «поджига» на сканирующий электрод подается импульс, одноименные потенциалы складываются, и вектор электростатического поля удваивает свою величину. Происходит разряд -- часть заряженных ионов отдает энергию в виде излучения квантов света в ультрафиолетовом диапазоне (в зависимости от газа). В свою очередь, флюоресцирующее покрытие, находясь в зоне разряда, начинает излучать свет в видимом диапазоне, который и воспринимает наблюдатель. 97% ультрафиолетовой составляющей излучения, вредного для глаз, поглощается наружным стеклом. Яркость свечения люминофора определяется величиной управляющего напряжения.

Высокая яркость до 650 кд/м2 и контрастность до 3000:1 наряду с отсутствием дрожания являются большими преимуществами таких мониторов (для сравнения: у професионального ЭЛТ-монитора яркость равна приблизительно 350 кд/м2 , а у телевизора -- от 200 до 270 кд/м2 при контрастности от 150:1 до 200:1). Высокая четкость изображения сохраняется на всей рабочей поверхности экрана. Кроме того, угол по отношению к нормали, под которым увидеть нормальное изображение на плазменных мониторах, существенно больше, чем у LCD-мониторов. К тому же плазменные панели не создают магнитных полей (что служит гарантией их безвредности для здоровья), не страдают от вибрации, как ЭЛТ-мониторы, а их небольшое время регенерации позволяет использовать их для отображения видео- и телесигнала. Отсутствие искажений и проблем сведения электронных лучей и их фокусировки присуще всем плоскопанельным дисплеям. Необходимо отметить и стойкость PDP-мониторов к электромагнитным полям, что позволяет использовать их в промышленных условиях -- даже мощный магнит, помещенный рядом с таким дисплеем, никак не повлияет на качество изображения. В домашних же условиях на монитор можно поставить любые колонки, не опасаясь возникновения цветных пятен на экране.

Главными недостатками такого типа мониторов является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме этого, свойства люминофорных элементов быстро ухудшаются, и экран становится менее ярким. Поэтому срок службы плазменных мониторов ограничен 10000 часами (это около 5 лет при офисном использовании). Из-за этих ограничений, такие мониторы используются пока только для конференций, презентаций, информационных щитов, то есть там, где требуются большие размеры экранов для отображения информации. Однако есть все основания предполагать, что в скором времени существующие технологические ограничения будут преодолены, а при снижении стоимости, такой тип устройств может с успехом применяться в качестве телевизионных экранов или мониторов для компьютеров.

Неплохие перспективы PDP связывают с относительно низкими требованиями к производственным условиям; в отличие от TFT-матриц PDP-экраны можно изготовлять в условиях низких температур методом прямой печати.

Практически каждый производитель плазменных панелей добавляет к классической технологии некоторые собственные ноу-хау, улучшающие цветопередачу, контрастность и управляемость. В частности, NEC предлагает технологию капсулированного цветового фильтра (CCF), отсекающего ненужные цвета, и методику повышения контрастности за счет отделения пикселей друг от друга черными полосами (такая же технология используется Pioneer). В мониторах Pioneer также используются технология Enhanced Cell Structure, суть которой в увеличении площади люминофорного пятна, и новая химическая формула голубого люминофора, который дает более яркое свечение, и, соответственно, повышает контрастность. Компания Samsung разработала конструкцию монитора повышенной управляемости -- панель разделена на 44 участка, каждый из которых имеет собственный электронный блок управления.

Компании Sony, Sharp и Philips совместно разрабатывают технологию PALC (Plasma Addressed Liquid Crystal), которая должна соединить в себе преимущества плазменных и LCD экранов с активной матрицей. Дисплеи, созданные на основе данной технологии, сочетают в себе преимущества жидких кристаллов (яркость и сочность цветов, контрастность) с большим углом видимости и высокой скоростью обновления плазменных панелей. В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения. Первые образцы на основе технологии PALC появились в 1998 году.

Можно привести несколько удачных примеров использования плазменных мониторов. В торговом центре в Осло установлено 70 дисплеев, на которых покупают рекламное время небольшие магазинчики. Там PDP-мониторы окупили себя за 2,5 месяца. Используют их и в аэропортах. В частности, в Вашингтоне они установлены в зале прилета. Благодаря своей динамичности такой способ подачи информации привлекает гораздо больше внимания, чем традиционные табло. Есть опыт применения плазменных мониторов и в ресторанах McDonalds. Различные телевизионные компании, например CBS, NBC, BBS, MTV и российская НТВ используют в оформлении своих студий PDP-мониторы. Это связано с тем, что высокая частота обновления позволяет вести съемку PDP-дисплея обычной камерой, и при этом не возникает мерцания или стробоскопического эффекта.

На лицевой стороне экрана и адресными электродами, проходящими по его задней стороне. Газовый разряд вызывает ультрафиолетовое излучение , которое, в свою очередь, инициирует видимое свечение люминофора. В цветных плазменных панелях каждый пиксель экрана состоит из трёх идентичных микроскопических полостей, содержащих инертный газ (ксенон) и имеющих два электрода, спереди и сзади. После того, как к электродам будет приложено сильное напряжение, плазма начнёт перемещаться. При этом она излучает ультрафиолетовый свет, который попадает на люминофоры в нижней части каждой полости. Люминофоры излучают один из основных цветов: красный, зелёный или синий. Затем цветной свет проходит через стекло и попадает в глаз зрителя. Таким образом, в плазменной технологии пиксели работают, подобно люминесцентным трубкам, но создание панелей из них довольно проблематично. Первая трудность - размер пикселя. Суб-пиксель плазменной панели имеет объём 200 мкм x 200 мкм x 100 мкм, а на панели нужно уложить несколько миллионов пикселей, один к одному. Во-вторых, передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома - он проводит ток намного лучше, но, к сожалению, непрозрачен.

Наконец, требуется подобрать правильные люминофоры. Они зависят от требуемого цвета:

  • Зелёный: Zn 2 SiO 4:Mn 2+ / BaAl 12 O 19:Mn 2+
  • Красный: Y 2 O 3:Eu 3+ / Y0,65Gd 0,35 BO 3:Eu 3
  • Синий: BaMgAl 10 O 17:Eu 2+

Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего. Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх суб-пикселей. На плазменной панели 1280x768 пикселей присутствует примерно три миллиона суб-пикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления суб-пикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние - в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, - подобно сканированию лучом на ЭЛТ-мониторах.

Немного истории.

Первый прототип плазменного дисплея появился в 1964 году. Его сконструировали ученые Иллинойского университета Битцер и Слоттоу как альтернативу кинескопному экрану для компьютерной системы Plato. Дисплей этот был монохромным, не требовал дополнительной памяти и сложных электронных схем и отличался высокой надежностью. Его предназначением было в основном индицировать буквы и цифры. Однако в качестве компьютерного монитора он так и не успел, как следует реализоваться, поскольку благодаря полупроводниковой памяти, появившейся в конце 70-х, кинескопные мониторы оказались дешевле в производстве. Зато плазменные панели благодаря малой глубине корпуса и большому экрану получили распространение в качестве информационных табло в аэропортах, вокзалах и на биржах. Информационными панелями плотную занялась компания IBM, а в 1987 году бывший студент Битцера, доктор Лэрри Вебер, основал компанию Plasmaco, которая занялась производством монохромных плазменных дисплеев. Первый же цветной плазменный дисплей 21" был представлен фирмой Fujitsu в 1992 году. Разрабатывался он совместно с конструкторским бюро Иллинойского университета и компанией NHK. А в 1996 Fujitsu покупает компанию Plasmaco со всеми ее технологиями и заводом, и выбрасывает на рынок первую коммерчески успешную панель плазмы – Plasmavision с экраном разрешения 852 х480 диагональю 42" с прогрессивной разверткой. Началась продажа лицензий другим производителям, первым среди которых стал Pioneer. Впоследствии, активно развивая плазменную технологию, Pioneer, пожалуй, больше всех остальных преуспел на плазменном поприще, создав целый ряд великолепных моделей плазмы.

При всем ошеломляющем коммерческом успехе плазменных панелей качество изображения поначалу было, мягко сказать, удручающим. Стоили же они баснословных денег, но быстро завоевали аудиторию благодаря тому, что выгодно отличались от кинескопных монстров плоским корпусом, дававшим возможность повесить телевизор на стену, и размерами экрана: 42 дюйма по диагонали против 32 (максимум для кинескопных телевизоров). В чем же был основной дефект первых плазменных мониторов? Дело в том, что при всей красочности картинки они совершенно не справлялись с плавными цветовыми и яркостными переходами: последние распадались на ступеньки с рваными краями, что на подвижном изображении выглядело вдвойне ужасно. Оставалось только гадать, отчего возникал данный эффект, о котором, как будто сговорившись, ни слова не писали средства массовой информации, превозносившие новые плоские дисплеи. Однако лет через пять, когда сменилось несколько поколений плазмы, ступеньки стали встречаться все реже, да и по другим показателям качество изображения стало стремительно расти. К тому же помимо 42-дюймовых появились панели 50" и 61". Постепенно росло и разрешение, и где-то на этапе перехода к 1024 х 720 плазменные дисплеи были, что называется, в самом соку. Совсем же недавно плазма успешно переступила новый порог качества, войдя в привилегированный круг устройств Full HD. В настоящее время наиболее популярными являются размеры экрана 42 и 50 дюймов по диагонали. В придачу к стандартному 61" появился размер 65", а также рекордный 103". Впрочем, настоящий рекорд только грядет: компания Matsushita (Panasonic) недавно анонсировала панель 150"! Но это, как и модели 103" (кстати, на основе панелей Panasonic плазмы такого же размера производит известная американская компания Runco), штука неподъемная как в прямом, так и в еще более прямом смысле (вес, цена).

Технологи плазменных панелей.

Просто о сложном.

Вес был упомянут неспроста: плазменные панели очень много весят, особенно модели больших размеров. Это является следствием того, что плазменная панель в основном состоит из стекла, если не считать металлическое шасси и пластиковый корпус. Стекло здесь необходимо и незаменимо: оно останавливает вредное ультрафиолетовое излучение. По этой же причине никто не производит люминесцентные лампы из пластика, только из стекла.

Вся конструкция плазменного экрана - это два листа стекла, между которыми находится ячеистая структура пикселей, состоящих из триад субпикселей - красных, зеленых и голубых. Ячейки заполнены инертными, т. н. «благородными» газами - смесью неона, ксенона, аргона. Проходящий через газ электрический ток заставляет его светиться. По сути, плазменная панель представляет собой матрицу из крошечных флуоресцентных ламп, управляемых при помощи встроенного компьютера панели. Каждый пиксель-ячейка является своеобразным конденсатором с электродами. Электрический разряд ионизирует газы, превращая их в плазму - т. е. электрически нейтральную, высокоионизированную субстанцию, состоящую из электронов, ионов и нейтральных частиц. На самом деле каждый пиксель делится на три субпикселя, содержащих красный(R), зеленый(G) либо синий(B) люминофор: Зелёный: Zn2SiO4:Mn2+ / BaAl12O19:Mn2+ Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3 Синий: BaMgAl10O17:Eu2+ Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего. Фактически вертикальные ряды R, G и B просто поделены на отдельные ячейки горизонтальными перетяжками, что делает структуру экрана очень похожей на масочный кинескоп обычного телевизора. Сходство с последним еще и в том, что здесь используется тот же цветной фосфор, которым покрыты изнутри ячейки субпикселей. Только поджог фосфорного люминофора осуществляется не электронным лучом, как в кинескопе, а ультрафиолетовым излучением. Для создания разнообразных оттенков цветов интенсивность свечения каждого субпикселя контролируется независимо. В кинескопных телевизорах это делается путем изменения интенсивности потока электронов, в `плазме` - при помощи 8-битной импульсной кодовой модуляции. Общее число цветовых комбинаций в этом случае достигает 16,777,216 оттенков.

Как получается свет. Основа каждой плазменной панели - это собственно плазма, т. е. газ, состоящий из ионов (электрически заряженных атомов) и электронов (отрицательно заряженных частиц). В нормальных условиях газ состоит из электрически нейтральных, т. е. не имеющих заряда частиц.

Если ввести в газ большое число свободных электронов, пропустив через него электрический ток, ситуация меняется радикально. Свободные электроны сталкиваются с атомами, `выбивая` все новые и новые электроны. Без электрона меняется баланс, атом приобретает положительный заряд и превращается в ион.

Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы стремятся друг к другу.

Среди всего этого хаоса частицы постоянно сталкиваются. Столкновения `возбуждают` атомы газа в плазме, заставляя их высвобождать энергию в виде фотонов в ультрафиолетовом спектре.

При попадании фотонов на люминофор, частицы последнего возбуждаются, испускают свои собственные фотоны, но они уже окажутся видимы и приобретут форму световых лучей.

Между стеклянными стенками располагаются сотни тысяч ячеек, покрытых люминофором, который светится красным, зеленым и голубым светом. Под видимой стеклянной поверхностью - по всему экрану - расположены длинные, прозрачные дисплейные электроды, изолированные сверху листом диэлектрика, а снизу слоем оксида магния (MgO).

Чтобы процесс был стабильным и управляемым, необходимо обеспечить достаточное количество свободных электронов в толще газа плюс достаточно высокое напряжение (порядка 200 В), которое заставит ионный и электронные потоки двигаться навстречу друг другу.

А чтобы ионизация происходила мгновенно, помимо управляющих импульсов на электродах присутствует остаточный заряд. К электродам управляющие сигналы подводятся по горизонтальным и вертикальным проводникам, образующим адресную сетку. Причем вертикальные (дисплейные) проводники представляют собой токопроводящие дорожки на внутренней поверхности защитного стекла с передней стороны. Они прозрачны (слой окиси олова с примесью индия). Горизонтальные же (адресные) металлические проводники располагаются с тыльной стороны ячеек.

Ток течет от дисплейных электродов (катодов) к анодным пластинкам, повернутым под углом 90 градусов относительно дисплейных электродов. Защитный слой служит для исключения прямого контакта с анодом.

Под дисплейными электродами располагаются уже упомянутые нами ячейки пикселей RGB, выполненные в форме крохотных коробочек, изнутри покрытых цветным люминофором (каждая „цветная“ коробочка - красная, зеленая или голубая - называется подпикселем). Под ячейками находится конструкция из адресных электродов, расположенных под углом 90 градусов к дисплейным электродам и проходящих через соответствующие цветные подпиксели. Следом располагается защитный для адресных электродов уровень, закрытый задним стеклом.

Прежде, чем плазменный дисплей будет запаян, в пространство между ячейками впрыскивается под низким давлением смесь двух инертных газов - ксенона и неона. Для ионизации конкретной ячейки создается разность напряжений между дисплейным и адресным электродами, расположенными друг напротив друга выше и ниже ячейки.

Немного реалий.

На самом деле структура реальных плазменных экранов гораздо сложнее, да и физика процесса совсем не так проста. Помимо описанной выше матричной сетки существует и другая разновидность - сопараллельная, предусматривающая дополнительный горизонтальный проводник. Кроме этого, тончайшие металлические дорожки дублируют для выравнивания потенциала последних по всей длине, которая довольно значительна (1 м и более). Поверхность электродов покрыта слоем окиси магния, который выполняет изолирующую функцию и одновременно обеспечивает вторичную эмиссию при бомбардировке положительными ионами газа. Существуют и различные типы геометрии пиксельных рядов: простая и «вафельная» (ячейки разделены двойными вертикальными стенками и горизонтальными перемычками). Прозрачные электроды могут выполняться в форме двойного Т или меандра, когда они как бы переплетаются с адресными, хотя и находятся в разных плоскостях. Существует множество и других технологических хитростей, направленных на повышение эффективности плазменных экранов, которая изначально была довольно низкой. С этой же целью производители варьируют газовый состав ячеек, в частности, увеличивают процентное содержание ксенона с 2 до 10%. Кстати, газовая смесь в ионизированном состоянии слегка светится и сама по себе, поэтому, дабы устранить загрязнение спектра люминофоров этим свечением, в каждой ячейке устанавливают миниатюрные светофильтры.

Управление сигналом.

Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх субпикселей. На плазменной панели 1280x768 пикселей присутствует примерно три миллиона субпикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления субпикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние - в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, - подобно сканированию лучом на ЭЛТ-мониторах. Управление пикселями осуществляется с помощью трех типов импульсов: стартовых, поддерживающих и гасящих. Частота - порядка 100 кГц, хотя известны идеи дополнительной модуляции управляющих импульсов радиочастотами (40 МГц), что обеспечит более равномерную плотность разряда в толще газа.

По сути, управление свечением пикселей носит характер дискретной широтно-импульсной модуляции: пикселей светятся ровно столько, сколько длится поддерживающий импульс. Длительность же его при 8-битной кодировке может принимать 128 дискретных значений, соответственно, получается такое же количество градаций яркости. Уж не в этом ли была причина рваных градиентов, распадающихся на ступеньки? Плазма более поздних поколений постепенно наращивала разрешение: 10, 12, 14 бит. Последние модели Runco, относящиеся к категории Full HD, используют 16-битную обработку сигнала (вероятно, и кодировку также). Так или иначе, ступеньки исчезли и больше, будем надеяться, не появятся.

Помимо самой панели.

Постепенно совершенствовалась не только сама панель, но и алгоритмы обработки сигнала: масштабирования, прогрессивного преобразования, компенсации движений, подавления шумов, оптимизации цветосинтеза и пр. У каждого производителя плазмы появился свой набор технологий, частично дублирующий чужие под другими названиями, но частично и свои. Так, почти все использовали алгоритмы масштабирования и адаптивного прогрессивного преобразования DCDi Faroudja, в то время как некоторые заказывали оригинальные разработки (например, Vivix у Runco, Advanced Video Movement у Fujitsu, Dynamic HD Converter у Pioneer и т. д.). В целях повышения контрастности вносились коррективы в структуру управляющих импульсов и напряжений. Для увеличения яркости в форму ячеек вводились дополнительные перемычки для увеличения покрытой люминофором поверхности и снижения засветки соседних пикселей (Pioneer). Постепенно росла роль «интеллектуальных» алгоритмов обработки: вводилась покадровая оптимизация яркости, система динамического контраста, продвинутые технологии цветосинтеза. Корректировки в исходный сигнал вносились не только исходя из характеристик самого сигнала (насколько темным или светлым являлся текущий сюжет или насколько быстро движутся объекты), но и из уровня внешней освещенности, который отслеживался с помощью встроенного фотосенсора. С помощью продвинутых алгоритмов обработки удалось достичь просто фантастических успехов. Так, компания Fujitsu путем интерполяционного алгоритма и соответствующих доработок процесса модуляции добилась увеличения количества градаций цвета в темных фрагментах до 1019, что намного превышает собственные возможности экрана при традиционном подходе и соответствует чувствительности человеческого зрительного аппарата (технология Low Brightness Multi Gradation Processing). Эта же компания разработала метод раздельной модуляции четных и нечетных управляющих горизонтальных электродов (ALIS), который затем использовался в моделях Hitachi, Loewe и др. Метод давал повышенную четкость и уменьшал зубчатость наклонных контуров даже без дополнительной обработки, в связи, с чем в спецификациях использовавших его моделей плазмы появился необычный показатель разрешения 1024 × 1024. Такое разрешение, конечно, являлось виртуальным, но эффект оказался весьма впечатляющим.

Достоинства и недостатки.

Плазма - это дисплей, который, подобно кинескопному телевизору, не использует светоклапаны, а излучает уже модулированный свет непосредственно фосфорными триадами. Это в определенной степени роднит плазму с электронно-лучевыми трубками, столь привычными и доказавшими свою состоятельность на протяжении нескольких десятилетий.

У плазмы заметно более широкий охват цветового пространства, что также объясняется спецификой цветосинтеза, который формируется «активными» фосфорными элементами, а не путем пропускания светового потока лампы через светофильтры и светоклапаны.

Кроме того, ресурс плазмы около 60000 часов.

Итак, плазменные телевизоры это:

Большой размер экрана + компактность + отсутствие элемента мерцания; - Высокая четкость изображение; - Плоский экран, не имеющий геометрических искажений; - Угол обзора 160 градусов по всем направлениям; - Механизм не подверженный влиянию магнитных полей; - Высокие разрешение и яркость изображения; - Наличие компьютерных входов; - Формат кадра 16:9 и наличие режима прогрессивная развертка.

В зависимости от ритма пульсации тока, который пропускается через ячейки, интенсивность свечения каждого субпикселя, контроль над которым осуществлялся независимо, будет разной. Увеличивая или уменьшая интенсивность свечения, можно создавать разнообразные цветовые оттенки. Благодаря такому принципу работы плазменной панели удаётся получить высокое качество изображения без цветовых и геометрических искажений. Слабой стороной является относительно низкая контрастность. Это связано с тем, что на ячейки постоянно должен подаваться ток низкого напряжения. В противном случае время отклика пикселей (их загорание и затухание) будет увеличено, что недопустимо.

Теперь о недостатках.

Передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома - он проводит ток намного лучше, но, к сожалению, непрозрачен. Боится плазма и не очень деликатной транспортировки. Потребление электроэнергии весьма значительное, хотя в последних поколениях его удалось существенно снизить, заодно исключив и шумные вентиляторы охлаждения.

Сейчас практически все делают выбор именно в пользу плоскопанельных телевизоров. Объемные агрегаты, занимающие полкомнаты, определенно уходят в прошлое. Плоскоэкранные телевизоры сегодня производятся по двум основным технологиям: плазменной и жидкокристаллической.

Попробуем разобраться конструктивно: плазма или ЖК что лучше? Подведем под споры научную основу.

На сегодняшний день плазма и ЖК приближаются друг к другу по основным характеристикам. Если раньше разница между ними была достаточно ощутимой, то сейчас ЖК приобретает всю большую диагональ, а плазма увеличивает Так какой лучше Что выбрать для покупки?

ЖК и плазма разница

Телевизор на базе жидкокристаллического дисплея

ЖК мониторы основаны на следующем принципе работы. Молекулы под действием электрического тока движутся в пространстве. Свет, проходя сквозь слой кристаллов или задерживаясь ими, попадает в светофильтр. В результате отображаются пиксели, состоящие из трех субпискелей: зеленого, синего и красного. Эта комбинация пикселей способна создавать картинку на экране в привычном нам виде.

Телевизор на базе плазменной панели

Плазменные телевизоры работают по следующему принципу. Все пиксели состоят из микроламп с газом (неон и ксенон). Они также трех цветов (красного, зеленого, синего). К колбочкам, содержащим газ, подведены электроды, подающие напряжение. Уровень напряжения определяет яркость свечения ламп. Картинка плазмы получается за счет разницы в степени освещенности экрана, которая создает оттенки, воспринимаемые глазом.

основных параметров

Плазма или жк что лучше?

1. Размеры экрана.

Плазменные экраны не бывают меньше 32 дюймов. Минимальный размер ЖК монитора может быть сравним с экраном наручных часов. В это же время на сегодняшний день ЖК панели уже выпускаются очень больших размеров, которые практически не уступают плазме. Поэтому здесь нужно выбирать, исходя из габаритов помещения, в котором планируется установка телевизора. Пожалуй, ЖК по этому параметру более универсален.

2. Угол обзора

Угол обзора плазмы составляет не менее 170 градусов. ЖК панели по этому показателю, конечно, уступают. Новые модели ЖК приближаются уже к плазме по развороту угла, но чем больше угол, тем менее контрастным оказывается изображение. Поэтому здесь нужно признать преимущества плазмы.

3. Скорость отклика пикселя .

Здесь по общим параметрам лидирует плазма, в которой газовые разряды действуют практически моментально. Кристаллы перемещаются медленнее. Однако в последних моделях ЖК время включения сократилось до 1 миллисекунды, что привело к фактическому избавлению от смазывания изображения.

4. Контрастность картинки .

Плазменные экраны выдают картинки большей контрастности, чем ЖК мониторы. Плазма характеризуется прямым излучением, за счет чего получается сочное и яркое изображение. ЖК матрица может моделировать свет от ламп, но не излучать его. Поэтому картинка ЖК экрана мягче. Это дело вкуса потребителя.

5. Равномерность освещения панели .

Плазменные экраны освещаются равномерно за счет одинаковости всех ячеек экрана. В ЖК такого эффекта добиться сложнее из-за качества ламп подсветки. Кроме того, при большей яркости, ЖК мониторы теряют контрастность. Преимущество - за плазмой.

6.Энергопотребление.

Плазма потребляет энергии раза в два больше, чем ЖК телевизор. Это связано с проблемой отвода тепла, из-за чего необходима дополнительная работа вентилятора. В этом отношении ЖК гораздо выгоднее для потребителя.

7. Срок службы .

Плазма в среднем рассчитана на 30 тысяч часов, ЖК примерно на 60 тысяч. Отдельные производители предлагают модели с возможностями работы до 100 тысяч часов.

Итоги: плазма или жк что лучше

Плазма выигрывает по большему количеству показателей: безопасна для здоровья, изображение не мерцает, яркость и контрастность на высоком уровне, большой угол обзора. Очевидным недостатком выступает высокое энергопотребление.ЖК панели являются более выгодными экономически, поскольку экономят электроэнергию. К тому же они рассчитаны на гораздо больший срок эксплуатации и более дешевы при замене деталей.

По большому же счету, сейчас обе технологии настолько развиты, что практически не уступают друг другу по качеству . Однозначно сказать: плазма или ЖК что лучше - сложно. Выбор зависит от конкретных необходимостей потребителя и субъективных предпочтений.

Общая характеристика методов вывода изображений

Существуют два основных метода вывода изображения: векторный метод и растровый метод.

Векторный метод . При этом методе рисующий инструмент прорисовывает только изображение фигуры и его траектория движения определяется выводим изображением. Изображение состоит из графических примитивов: отрезки прямых –векторы, дуги, окружности и т.д. ввиду сложности построения системы управления лучом, обеспечивающей быстрое и точное по сложной траектории этот метод пока не нашел широкого применения.

Растровый метод сканирует всю поверхность вывода изображения и обеспечивает рисующий элемент, который способен оставлять видимый след. Траектория движения инструмента постоянна и не зависит от выводимого изображения, но инструмент может рисовать, а может не рисовать отдельные точки. В случае использования Видео монитора, как инструмента рисующего изображение является управляемый луч для черно-белого изображения и три базовых луча (Красный, Зеленый, Синий) для цветного изображения. Луч построчно сканирует экран и вызывает свечение люминофора, нанесенного на внутреннюю поверхность экрана, рис. 29.

При этом, когда луч движется слева направо, он включен, а когда возвращается справа налево он выключен. Каждая строка разбита на некоторое количество точек – пикселей (Picture Elements-элементарные картинки), засветкой каждой из которых может управлять устройство, формирующее изображение (графическая карта).

Рис. 29 – Прогрессивная развертка

В системах с прогрессивной или нечередующейся разверткой луч идет по тем же строкам в различных кадрах (рис. 29), а в системах с чересстрочной разверткой луч пройдет по строкам, смещенным на половину шага строки, и поэтому всю поверхность кадра луч проходит за два цикла кадровой развертки. Это позволяет в два раза снизить частоту строчной развертки, а следовательно и скорость вывода точек изображения на экран (рис. 30).

Рис. 30 – Чересстрочная развертка

Так, как инерционность зрения человека находится на частоте 40-60 Гц, то частота смена кадра не должна быть ниже этого значения, чтобы человек не мог заметить эту смену, т.е. на уровне 50Гц. Для обеспечения качественного изображения на экране луч должен иметь как можно больше количество светящихся точек на экране. Например: 600 строк по 800 точек каждая строка. Следовательно частота строк составит:

50Гц х (600)=30 000 Гц= 30 кГц

При этом, для вывода каждой точки необходима частота:

30кГц х 800= 24000кГц= 48 мГц

А это уже высокая частота для электронных схем.

Кроме того, соседние точки выводимого сигнала не связаны друг с другом, поэтому частоту управления интенсивностью луча должна быть еще увеличена на 25% и тогда составит около 60 мГц.

Такую частоту пропускания должны обеспечивать все устройства видеотракта: видеоусилители, сигнальные линии интерфейсов и сам графический адаптер. На всех этих стадиях обработки и передачи сигнала высокая частота создает технические трудности. Для уменьшения частоты строк обеспечивают чересстрочную развертку изображения за один полукадр:

    четные строки засвечиваются в одном полукадре;

    нечетные строки – в другом полукадре.

Однако, качество изображения требует увеличение частоты кадра с целью исключения мерцания изображения, этого же требует и увеличение размера экрана монитора, на которое выводится само изображение. При этом, чем выше частота, тем ниже производительность графической системы при построении изображений.

Таким образом, существуют некоторые оптимальные соотношения работы графического редактора и монитора вывода изображения: графический редактор является задающим устройством, а монитор со своими генераторами разверток должен обеспечивать заданные параметры синхронизации разверток луча и кадра.

Классификация мониторов

Монито́р - устройство, предназначенное для визуального отображения информации. Современный монитор состоит из корпуса, блока питания, плат управления и экрана. Информация (видеосигнал) для вывода на монитор поступает с компьютера посредством видеокарты, либо с другого устройства, формирующего видеосигнал.

По виду выводимой информации мониторы делятся на:

    алфавитно-цифровые [система текстового (символьного) дисплея (character display system) – начиная с MDA]

    • дисплеи, отображающие только алфавитно-цифровую информацию;

      дисплеи, отображающие псевдографические символы.

    графическиедля вывода текстовой и графической (в том числе видео) информации.

    • векторные (vector-scan display) – лазерное световое шоу;

      растровые (raster-scan display) – используется практически в каждой графической подсистеме PC.

По типу экрана:

    ЭЛТ - на основе электронно-лучевой трубки (англ.cathode ray tube, CRT);

    ЖК - жидкокристаллические мониторы (англ.liquid crystal display, LCD);

    Плазменный - на основе плазменной панели(plasma display panel, PDP, gas-plazma display panel);

    Проектор - видеопроектор и экран, размещённые отдельно или объединённые в одном корпусе;

    OLED-монитор - на технологии OLED(англ.organic light-emitting diode - органический светоизлучающий диод).

По виду управления различают:

    Цифровые;

    Аналоговые.

По размерности отображения:

    двухмерный (2D) - одно изображение для обоих глаз

    трехмерный (3D) - для каждого глаза формируется отдельное изображение для получения эффекта объема.

По типу интерфейсного кабеля

    композитный;

    раздельный;

Электронно-лучевые мониторы

Самым важным элементом такого монитора является кинескоп, называемый также электронно-лучевой трубкой. ЭЛТ представляет собой электронный вакуумный прибор в стеклянной колбе, в горловине которого находится электронная пушка, а на дне - экран, покрытый люминофором. Нагреваясь, электронная пушка испускает поток электронов, которые с большой скоростью устремляются к экрану. Поток электронов (электронный луч) проходит через фокусирующую и отклоняющую катушки, которые направляют его в определенную точку покрытого люминофором экрана. Под воздействием ударов электронов люминофор излучает свет, который видит пользователь, сидящий перед экраном компьютера.

В электронно-лучевых мониторах используются три слоя люминофора: красный , зеленый и синий . Для выравнивания потоков электронов применяется так называемая теневая маска - металлическая пластина, имеющая щели или отверстия, которые разделяют красный, зеленый и синий люминофор на группы по три точки каждого цвета. Качество изображения определяется типом используемой теневой маски; на резкость изображения влияет расстояние между группами люминофора (шаг расположения точек).

На рис. 31 показан типичная электронно-лучевая трубка в разрезе.

Рис. 31 – Цветная ЭЛТ в разрезе: 1 – электронные пушки; 2 – электронные лучи; 3 – фокусирующая катушка; 4 – отклоняющие катушки; 5 – анод; 6 – теневая маска; 7 – люминофор; 8 – маска и зерна люминофора в увеличении.

Химическое вещество, используемое в качестве люминофора, характеризуется временем послесвечения, которое отражает длительность свечения люминофора после воздействия электронного пучка. Время послесвечения и частота обновления изображения должны соответствовать друг другу, чтобы не было заметно мерцание изображения (если время послесвечения очень мало) и отсутствовали размытость и удвоение контуров в результате наложения последовательных кадров (если время послесвечения слишком велико).

Электронный луч движется очень быстро, прочерчивая экран строками слева направо и сверху вниз по траектории, именуемой растром. Период сканирования по горизонтали определяется скоростью перемещения луча поперек экрана. В процессе развертки (перемещения по экрану) луч воздействует на те элементарные участки люминофорного покрытия экрана, где должно появиться изображение. Интенсивность луча постоянно меняется, в результате чего изменяется яркость свечения соответствующих участков экрана. Поскольку свечение исчезает очень быстро, электронный луч должен вновь и вновь пробегать по экрану, возобновляя его. Этот процесс называется регенерацией изображения.

В большинстве мониторов частота регенерации, которую также называют частотой вертикальной развертки, во многих режимах приблизительно равна 85 Гц, т.е. изображение на экране обновляется 85 раз в секунду. Снижение частоты регенерации приводит к мерцанию изображения, что очень утомляет глаза. Следовательно, чем выше частота регенерации, тем комфортнее себя чувствует пользователь.

Очень важно, чтобы частота регенерации, которую может обеспечить монитор, соответствовала частоте, на которую настроен видеоадаптер. Если такого соответствия нет, изображение на экране вообще не появится, а монитор может выйти из строя. В целом видеоадаптеры обеспечивают намного большую частоту регенерации, чем поддерживается большинством мониторов. Именно поэтому изначальная частота регенерации, определенная для большинства видеоадаптеров с целью предотвращения повреждения монитора, составляет 60 Гц.

В настоящее время мониторы на базе ЭЛТ можно считать морально устаревшими.

ЖК мониторы

Экраны LCD-мониторов (Liquid Crystal Display, жидкокристаллические мониторы (ЖК-мониторы)) сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности оптических), связанных с упорядоченностью в ориентации молекул.

Как ни странно, но жидкие кристаллы старше ЭЛТ почти на десять лет, первое описание этих веществ было сделано еще в 1888 г. Однако долгое время никто не знал, как их применить на практике и никому, кроме физиков и химиков, они не были интересны. В конце 1966 г. корпорация RCA продемонстрировала прототип LCD-монитора – цифровые часы.

Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975 г. уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. Так, в 1976 г. Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселей.

Принцип работы ЖК мониторов

Работа ЖК-мониторов основана на явлении поляризации светового потока. Известно, что так называемые кристаллы поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы "просеивает" свет, данный эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электро-статическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами.

Экран LCD монитора представляет собой массив маленьких сегментов (называемых пикселями), которыми можно манипулировать для отображения информации. LCD монитор имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка, которые собственно и содержат тонкий слой жидких кристаллов между собой, рис. 32.

Рис. 32 – структура экрана LCD монитора

На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках.

Молекулы одной из разновидностей жидких кристаллов (нематиков) при отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок на поверхность стекла позволяет обеспечить одинаковый угол поворота плоскости поляризации для всех ячеек. Две панели расположены очень близко друг к другу.

Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света).

Плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели, рис. 33.

Рис. 33 – Поворот плоскости поляризации светового луча

При появлении электрического поля, молекулы жидких кристаллов частично выстраиваются вертикально вдоль поля, угол поворота плоскости поляризации света становится отличным от 90 градусов и свет беспрепятственно проходит через жидкие кристаллы, рис. 34.

Рис. 34 – Положение молекул в присутствии электрического поля

Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, так как первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем, рис 35а.

Рис. 35 – Прохождение света без наличия электрического поля (а) и при наличии (б)

В присутствии электрического поля поворота вектора поляризации происходит на меньший угол, тем самым второй поляризатор становится только частично прозрачным для излучения. Если разность потенциалов будет такой, что поворота плоскости поляризации в жидких кристаллах не произойдет совсем, то световой луч будет полностью поглощен вторым поляризатором, и экран при освещении сзади будет спереди казаться черным, (лучи подсветки поглощаются в экране полностью) рис. 35б. Если расположить большое число электродов, которые создают разные электрические поля в отдельных местах экрана (ячейки), то появится возможность при правильном управлении потенциалами этих электродов отображать на экране буквы и другие элементы изображения. Электроды помещаются в прозрачный пластик и могут иметь любую форму.

Технологические новшества позволили ограничить размеры электродов величиной маленькой точки, соответственно на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD монитора, и позволяет нам отображать даже сложные изображения в цвете.

Для вывода цветного изображения необходима подсветка монитора сзади, таким образом, чтобы свет исходил из задней части LCD дисплея. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинируя три основные цвета для каждой точки или пикселя экрана, появляется возможность воспроизвести любой цвет.

В случае с цветом существует несколько возможностей: можно сделать несколько фильтров друг за другом (приводит к малой доле проходящего излучения), можно воспользоваться свойством жидкокристаллической ячейки - при изменении напряженности электрического поля угол поворота плоскости поляризации излучения изменяется по-разному для компонент света с разной длиной волны. Эту особенность можно использовать для того, чтобы отражать (или поглощать) излучение заданной длины волны (проблема состоит в необходимости точно и быстро изменять напряжение). Какой именно механизм используется, зависит от конкретного производителя. Первый метод проще, второй эффективнее.

Первые LCD дисплеи были очень маленькими, около 8 дюймов, в то время как сегодня они достигли 15" размеров для использования в ноутбуках, а для настольных компьютеров производятся 20" и более LCD мониторы. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270° с помощью STN технологии.

STN - это сокращение, означающее "Super Twisted Nematic". Технология STN позволяет увеличить торсионный угол (угол кручения) ориентации кристаллов внутри LCD дисплея с 90° до 270°, что обеспечивает лучшую контрастность изображения при увеличении размеров монитора.

Часто STN ячейки используются в паре. Такая конструкция называется DSTN (Double Super Twisted Nematic), в которой одна двухслойная DSTN-ячейка состоит из 2 STN-ячеек, молекулы которых при работе поворачиваются в противоположные стороны. Свет, проходя через такую конструкцию в "запертом" состоянии, теряет большую часть своей энергии. Контрастность и разрешающая способность DSTN достаточно высокая, поэтому появилась возможность изготовить цветной дисплей, в котором на каждый пиксель приходится три ЖК-ячейки и три оптических фильтра основных цветов. Цветные дисплеи не способны работать от отраженного света, поэтому лампа задней подсветки - их обязательный атрибут. Для сокращения габаритов лампа находится с боку, а напротив нее зеркало.

Рис. 36 – Задняя подсветка LCD монитора

Также STN ячейки используются в режиме TSTN (Triple Super Twisted Nematic), когда два тонких слоя полимерной пленки добавляются для улучшения цветопередачи цветных дисплеев или для обеспечения хорошего качества монохромных мониторов.

Термин пассивная матрица (passive matrix) появился в результате разделения монитора на точки, каждая из которых, благодаря электродам, может задавать ориентацию плоскости поляризации луча, независимо от остальных, так что в результате каждый такой элемент может быть подсвечен индивидуально для создания изображения. Матрица называется пассивной, потому что технология создания LCD дисплеев, которая была описана выше, не может обеспечить быструю смену информации на экране. Изображение формируется строка за строкой путем последовательного подвода управляющего напряжения на отдельные ячейки, делающего их прозрачными. Из-за довольно большой электрической емкости ячеек напряжение на них не может изменяться достаточно быстро, поэтому обновление картинки происходит медленно. Такой дисплей имеет много недостатков с точки зрения качества, потому что изображение не отображается плавно и дрожит на экране. Маленькая скорость изменения прозрачности кристаллов не позволяет правильно отображать движущиеся изображения.

Для решения части вышеописанных проблем применяют специальные технологии, Для улучшения качества динамического изображения было предложено увеличить количество управляющих электродов. То есть вся матрица разбивается на несколько независимых подматриц (Dual Scan DSTN - два независимых поля развертки изображения), каждая из которых содержит меньшее количество пикселей, поэтому поочередное управление ими занимает меньше времени. В результате чего можно сократить время инерции ЖК.

В настоящее время Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS (SFT) и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода. Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, применённый в конкретных разработках.

TN + film (Twisted Nematic + film)

TN + film - самая простая технология. Часть film в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку film часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

Матрица TN работает следующим образом: если к пикселям не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.

Недостатки : худшая цветопередача, наименьшие углы обзора.

IPS (In-Plane Switching) или SFT (Super Fine TFT)

Технология In-Plane Switching (Super Fine TFT) была разработана компаниями Hitachi и NEC. Эти компании пользуются этими двумя разными названиями одной технологии - NEC technologies ltd. использует SFT, а Hitachi - IPS. Технология предназначалась для избавления от недостатков TN + film. Однако сначала, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение чёрного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а чёрным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено различными модификациями технологиями S-IPS (Super-IPS), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика, а также увеличением контрастности.

Достоинства : отличная цветопередача, большие углы обзора

Недостатки : большое время отклика, высокая себестоимость.

VA (Vertical Alignment)

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам. MVA (Multi-domain Vertical Alignment). Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160° (на современных моделях мониторов до 176-178°), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинствами технологии MVA являются глубокий чёрный цвет и отсутствие как винтовой структуры кристаллов, так и двойного магнитного поля.

Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения.

Аналогами MVA являются технологии:

    PVA (Patterned Vertical Alignment) от Samsung.

    Super PVA от Samsung.

    Super MVA от CMO.

Основные технические характеристики LCD мониторов

    Разрешение - горизонтальный и вертикальный размеры, выраженные в пикселях. В отличие от ЭЛТ-мониторов, ЖК имеют одно фиксированное разрешение, остальные достигаютсяинтерполяцией;

    Размер точки (размер пикселя) - расстояние между центрами соседних пикселей. Непосредственно связан с физическим разрешением;

    Соотношение сторон экрана(пропорциональный формат) - отношение ширины к высоте (5:4, 4:3, 16:9 и др.);

    Видимая диагональ - размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали;

    Контрастность - отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведённая для них цифра контрастности (так называемая динамическая) не относится к статическому изображению;

    Яркость - количество света, излучаемое дисплеем, обычно измеряется в канделахна квадратный метр;

    Время отклика - минимальное время, необходимое пикселю для изменения своей яркости;

    Угол обзора - угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.

Преимущества и недостатки ЖК мониторов

К их преимуществам ЖК можно отнести:

    малый размер и вес в сравнении с ЭЛТ;

    У ЖК-мониторов, в отличие от ЭЛТ, нет видимого мерцания, дефектов фокусировки лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью;

    Энергопотребление ЖК-мониторов в зависимости от модели, настроек и выводимого изображения может быть существенно ниже;

    Энергопотребление ЖК-мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки ЖК-матрицы.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки , часто принципиально трудноустранимые, например:

    В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости;

    Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах);

    Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения;

    Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки);

    Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев;

    Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии;

    Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2 (в России - ГОСТ Р 52324-2005). Стандарт определяет 4 класса качества ЖК-мониторов. Самый высокий класс - 1, вообще не допускает наличия дефектных пикселей. Самый низкий - 4, допускает наличие до 262 дефектных пикселей на 1 миллион работающих.

Плазменные мониторы

Размер всегда был главным препятствием при создании широкоэкранных мониторов. Мониторы размером больше 24", созданные с использованием ЭЛТ технологии, были слишком тяжелыми и громоздкими. ЖК-мониторы - плоские и легкие, но экраны, размер которых больше 20", обладали слишком высокой себестоимостью. Плазменная технология нового поколения идеально подходит для создания больших экранов.

Идея плазменной панели появилась вовсе не из чисто научного интереса. Ни одна из существовавших технологий не могла справиться с двумя простыми задачами: добиться высококачественной цветопередачи без неизбежной потери яркости и создать телевизор с широким экраном, чтобы он при этом не занимал всю площадь комнаты. А плазменные панели (PDP), тогда только теоретически, подобную задачу как раз решить могли. Первое время опытные плазменные экраны были монохромными (оранжевыми) и могли удовлетворить спрос только специфических потребителей, которым требовалась, прежде всего, большая площадь изображения. Поэтому первую партию PDP (около тысячи штук) купила Нью-йоркская Фондовая Биржа.

Направление плазменных мониторов возродилось после того, как стало окончательно ясно, что ни ЖК-мониторы, ни ЭЛТ не в состоянии недорого обеспечить получение экранов с большими диагоналями (более двадцати одного дюйма). Поэтому лидирующие производители бытовых телевизоров и компьютерных мониторов, такие, как Hitachi, NEC и другие, вновь вернулись к PDP.

Принцип работы плазменной панели состоит в управляемом холодном разряде разреженного газа (ксенона или неона), находящегося в ионизированном состоянии (холодная плазма). Рабочим элементом (пикселем), формирующим отдельную точку изображения, является группа из трех субпикселей, ответственных за три основных цвета соответственно. Каждый субпиксель представляет собой отдельную микрокамеру, на стенках которой находится флюоресцирующее вещество одного из основных цветов, рис. 37. Пиксели находятся в точках пересечения прозрачных управляющих хром-медь-хромовых электродов, образующих прямоугольную сетку.

Рис. 37 – Структура плазменной панели

Для того чтобы "зажечь" пиксель происходит следующее. На два ортогональных друг другу питающий и управляющий электроды, в точке пересечения которых находится нужный пиксель, подается высокое управляющее переменное напряжение прямоугольной формы. Газ в ячейке отдает большую часть своих валентных электронов, и переходит в состояние плазмы. Ионы и электроны попеременно собираются у электродов по разные стороны камеры, в зависимости от фазы управляющего напряжения. Для "поджига" на сканирующий электрод, подается импульс, одноименные потенциалы складываются, вектор электростатического поля удваивает свою величину. Происходит разряд - часть заряженных ионов отдает энергию в виде излучения квантов света в ультрафиолетовом диапазоне (в зависимости от газа). В свою очередь флюоресцирующее покрытие, находясь в зоне разряда, начинает излучать свет в видимом диапазоне, который и воспринимает наблюдатель. 97% ультрафиолетовой составляющей излучения, вредного для глаз, поглощается наружным стеклом. Яркость свечения люминофора определяется величиной управляющего напряжения.

Рис. 38 – Процесс генерации ячейкой видимого света

Основные преимущества . Высокая яркость (до 500 кд/м2) и контрастность (до 400:1) наряду с отсутствием дрожания являются большими преимуществами таких мониторов (Для сравнения: у профессионального ЭЛТ-монитора яркость равна приблизительно 350, а у телевизора - от 200 до 270 кд/м2 при контрастности от 150:1 до 200:1). Высокая четкость изображения сохраняется на всей рабочей поверхности экрана. Кроме того, угол по отношению к нормали, под которым увидеть нормальное изображение на плазменных мониторах существенно больше, чем у LCD-мониторов. К тому же плазменные панели не создают магнитных полей, (что служит гарантией их безвредности для здоровья), не страдают от вибрации, как ЭЛТ-мониторы, а их небольшое время регенерации позволяет использовать их для отображения видео и телесигнала. Отсутствие искажений и проблем сведения электронных лучей и их фокусировки присуще всем плоскопанельным дисплеям. Необходимо отметить и стойкость PDP-мониторов к электромагнитным полям, что позволяет использовать их в промышленных условиях - даже мощный магнит, помещенный рядом с таким дисплеем, никак не повлияет на качество изображения. В домашних же условиях на монитор можно поставить любые колонки, не опасаясь возникновения цветных пятен на экране.

Главными недостатками такого типа мониторов является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме этого, свойства люминофорных элементов быстро ухудшаются, и экран становится менее ярким, поэтому срок службы плазменных мониторов в большинстве случаев ограничен 10000 часами (это около 5 лет при офисном использовании). Из-за этих ограничений, такие мониторы используются пока только для конференций, презентаций, информа-ционных щитов, т.е. там, где требуются большие размеры экранов для отображения информации. Однако есть все основания предполагать, что в скором времени существующие технологические ограничения будут преодолены, а при снижении стоимости, такой тип устройств может с успехом применяться в качестве телевизионных экранов или мониторов для компьютеров.

Технология OLED

Принцип действия. Для создания органических светодиодов (OLED) используются тонкопленочные многослойные структуры, состоящие из слоев нескольких полимеров. При подаче на анод положительного относительно катода напряжения, поток электронов протекает через прибор от катода к аноду. Таким образом катод отдает электроны в эмиссионный слой, а анод забирает электроны из проводящего слоя, или другими словами анод отдает дырки в проводящий слой. Эмиссионный слой получает отрицательный заряд, а проводящий слой положительный. Под действием электростатических сил электроны и дырки движутся навстречу друг к другу и при встрече рекомбинируют. Это происходит ближе к эмиссионному слою, потому что в органических полупроводниках дырки обладают большей подвижностью, чем электроны. При рекомбинации происходит понижение энергии электрона которое сопровождается выделением (эмиссией) электромагнитного излучения в области видимого света. Поэтому слой и называется эмиссионным. Прибор не работает при подаче на анод отрицательного относительно катода напряжения. В этом случае дырки движутся к аноду, а электроны в противоположном направлении к катоду, и рекомбинации не происходит.

Рис. 39 – Схема 2-х слойной OLED-панели: 1 - катод(−); 2 - эмиссионный слой; 3 - испускаемое излучение; 4 - проводящий слой; 5 - анод (+)

В качестве материала анода обычно используется оксид индия легированный оловом. Он прозрачный для видимого света и имеет высокую работу выхода, которая способствует инжекции дырок в полимерный слой. Для изготовления катода часто используют металлы, такие как алюминий и кальций, так как они обладают низкой работой выхода, способствующей инжекции электронов в полимерный слой.

Классификация по способу управления. Существуют два вида OLED-дисплеев - PMOLED и AMOLED. Разница заключается в способе управления матрицей - это может быть либо пассивной матрицей (PM) или активной матрицей (AM).

В PMOLED -дисплеях используются контроллеры развертки изображения на строки и столбцы. Чтобы зажечь пиксель, необходимо включить соответствующую строку и столбец: на пересечении строки и столбца пиксель будет излучать свет. За один такт можно заставить светиться только один пиксель. Поэтому чтобы заставить светиться весь дисплей, необходимо очень быстро подать сигналы на все пиксели путем перебора всех строк и столбцов. Как это делается в старых.

Рис. 40 – Схема OLED-панели с пассивной матрицей

Дисплеи на базе PMOLED получаются дешевыми, но из-за необходимости строчной развертки изображения не возможно получить дисплеи больших размеров с приемлемым качеством изображения. Обычно размеры PMOLED-дисплеев не превышают 3" (7,5 см).

В AMOLED -дисплеях каждый пиксель управляется напрямую, поэтому они могут быстро воспроизводить изображение. Для управления каждой ячейкой OLED используются транзисторы, запоминающие необходимую для поддержания светимости пикселя информацию. Управляющий сигнал подается на конкретный транзистор, благодаря чему ячейки обновляются достаточно быстро. Размеры AMOLED-дисплеев могут иметь большие размеры, и на сегодня уже созданы дисплеи с размером 40" (100 см). Производство AMOLED-дисплеев дорогое из-за сложной схемы управления пикселями, в отличие от PMOLED-дисплеев, где для управления достаточно простого контроллера.

Рис. 41 – Схема OLED-панели с активной матрицей

Классификация по светоизлучающему материалу. В настоящее время в основном развиваются две технологии, показавшие наибольшую эффективность. Различаются они используемыми органическими материалами это микромолекулы (sm-OLED) и полимеры (PLED), последние делятся на просто полимеры, полимерорганические соединения (POLED), и фосфоресцирующие(PHOLED).

Схемы цветных OLED дисплеев. Существуют три схемы цветных OLED дисплеев:

    схема с раздельными цветными эмиттерами;

    схема WOLOD+CF (белые эмиттеры + цветные фильтры);

    схема с конверсией коротковолнового излучения.

Самый простой и привычный вариант – обычная трехцветная модель, которая в технологии OLED называется моделью с раздельными эмиттерами. Три органических материала излучают свет базовых цветов – R, G и B. Этот вариант самый эффективный с позиции использования энергии, однако, на практике оказалось довольно сложно подобрать материалы, которые будут излучать свет с нужной длиной волны, да еще с одинаковой яркостью.

Рис. 42 – Схемы цветных OLED дисплеев

Второй вариант использует три одинаковых белых эмиттера, которые излучают через цветные фильтры, однако он значительно проигрывает по эффективности использования энергии первому варианту, поскольку значительная часть излученного света теряется в фильтрах.

В третьем варианте (CCM – Color Changing Media) применяются голубые эмиттеры и специально подобранные люминесцентные материалы для преобразования коротковолнового голубого излучения в более длинноволновые – красный и зеленый. Голубой эмиттер, естественно, излучает «напрямую». У каждого из вариантов есть свои достоинства и недостатки:

Основные направления современных исследований и разработок

PHOLED (Phosphorescent OLED) - технология, являющаяся достижением Universal Display Corporation (UDC) совместно с Принстонским университетоми университетом Южной Калифорнии. Как и все OLED, PHOLED функционируют следующим образом: электрический ток подводится к органическим молекулам, которые испускают яркий свет. Однако, PHOLED используют принцип электрофосфоресценции, чтобы преобразовать до 100 % электрической энергии в свет. К примеру, традиционные флуоресцентные OLED преобразовывают в свет приблизительно 25-30 % электрической энергии. Из-за их чрезвычайно высокого уровня эффективности энергии, даже по сравнению с другим OLED, PHOLED изучаются для потенциального использования в больших дисплеях типа телевизионных мониторов или экранов для потребностей освещения. Потенциальное использование PHOLED для освещения: можно покрыть стены гигантскими PHOLED-дисплеями. Это позволило бы всем комнатам освещаться равномерно, вместо использования лампочек, которые распределяют свет неравномерно по комнате. Или мониторы-стены или окна - удобно для организаций или любителей поэкспериментировать с интерьером. Также к преимуществам PHOLED-дисплеев можно отнести яркие, насыщенные цвета, а также достаточно долгий срок службы.

TOLED - прозрачные светоизлучающие устройства TOLED (Transparent and Top-emitting OLED) - технология, позволяющая создавать прозрачные (Transparent) дисплеи, а также достигнуть более высокого уровня контрастности.

Рис. 43 – Пример использования TOLED дисплея

Прозрачные TOLED-дисплеи: направление излучения света может быть только вверх, только вниз или в оба направления (прозрачный). TOLED может существенно улучшить контраст, что улучшает читабельность дисплея при ярком солнечном свете.

Так как TOLED на 70 % прозрачны при выключении, то их можно крепить прямо на лобовое стекло автомобиля, на витрины магазинов или для установки в шлеме виртуальной реальности. Также прозрачность TOLED позволяет использовать их с металлом, фольгой, кремниевым кристаллом и другими непрозрачными подложками для дисплеев с отображением вперед (могут использоваться в будущих динамических кредитных картах). Прозрачность экрана достигается при использовании прозрачных органических элементов и материалов для изготовления электродов.

За счёт использования поглотителя с низким коэффициентом отражения для подложки TOLED-дисплея контрастное отношение может на порядок превзойти ЖКИ (мобильные телефоны и кабины военных самолетов-истребителей). По технологии TOLED также можно изготавливать многослойные устройства (например SOLED) и гибридные матрицы (Двунаправленные TOLED делают возможным удвоить отображаемую область при том же размере экрана - для устройств, у которых желаемый объём выводимой информации шире, чем существующий).

FOLED (Flexible OLED) - главная особенность - гибкость OLED-дисплея. Используется пластик или гибкая металлическая пластина в качестве подложки с одной стороны, и OLED-ячейки в герметичной тонкой защитной пленке - с другой. Преимущества FOLED: ультратонкость дисплея, сверхнизкий вес, прочность, долговечность и гибкость, которая позволяет применять OLED-панели в самых неожиданных местах.

Staked OLED - технология экрана от UDC (сложенные OLED). SOLED используют следующую архитектуру: изображение подпикселов складывается (красные, синие и зеленые элементы в каждом пикселе) вертикально вместо того, чтобы располагаться рядом, как это происходит в ЖК-дисплее или электронно-лучевой трубке. В SOLED каждым элементом подпиксела можно управлять независимо. Цвет пиксела может быть отрегулирован при изменении тока, проходящего через три цветных элемента (в нецветных дисплеях используется модуляция ширины импульса). Яркостью управляют, меняя силу тока. Преимущества SOLED: высокая плотность заполнения дисплея органическими ячейками, посредством чего достигается хорошее разрешение, а значит, высококачественная картинка. .(В SOLED-дисплеях в 3 раза улучшено качество изображения в сравнении с ЖКИ и ЭЛТ.

Преимущества и недостатки OLED

Преимущества:

Преимущества в сравнении c плазменными дисплеями:

    меньшие габариты и вес;

    более низкое энергопотреблениепри той же яркости;

    возможность создания гибких экранов.

Преимущества в сравнении c жидкокристаллическими дисплеями:

    меньшие габариты и вес;

    отсутствие необходимости в подсветке;

    отсутствие такого параметра как угол обзора- изображение видно без потери качества с любого угла.

    мгновенный отклик (на порядок выше, чем у LCD) - по сути полное отсутствие инерционности;

    более качественная цветопередача(высокийконтраст);

    возможность создания гибких экранов;

    большой диапазон рабочих температур (от −40 до +70C).

Яркость. OLED-дисплеи обеспечивают яркость излучения от нескольких кд/м2 (для ночной работы) до очень высоких яркостей - свыше 100 000 кд/м2, причем их яркость может регулироваться в очень широком динамическом диапазоне. Так как срок службы дисплея обратно пропорционален его яркости, для приборов рекомендуется работа при более умеренных уровнях яркости до 1000 кд/м2. При освещении LCD-дисплея ярким лучом света появляются блики, а картинка на OLED-экране останется яркой и насыщенной при любом уровне освещенности (даже при прямом попадании солнечных лучей на дисплей).

Контрастность. Здесь OLED также лидер. OLED-дисплеи обладают контрастностью 1000000:1 (Контрастность LCD порядка 5000:1, CRT порядка 2000:1)

Углы обзора. Технология OLED позволяет смотреть на дисплей с любой стороны и под любым углом, причем без потери качества изображения.

Энергопотребление. Меньшее энергопотребление при одинаковой яркости.

Недостатки:

    маленький срок службы люминофоров некоторых цветов (порядка 2-3 лет);

    дороговизна и неотработанность технологии по созданию больших матриц;

Главная проблема для OLED - время непрерывной работы должно быть не более 15 тыс. часов. Проблема, которая в настоящее время препятствует широкому распространению этой технологии, состоит в том, что «красный» OLED и «зелёный» OLED могут непрерывно работать на десятки тысяч часов дольше, чем «синий» OLED. Это визуально искажает изображение, причем время качественного показа неприемлемо для коммерчески жизнеспособного устройства. Однако можно считать это временными трудностями становления новой технологии, поскольку разрабатываются новые все более долговечныелюминофоры.

На лицевой стороне экрана и адресными электродами, проходящими по его задней стороне. Газовый разряд вызывает ультрафиолетовое излучение , которое, в свою очередь, инициирует видимое свечение люминофора. В цветных плазменных панелях каждый пиксель экрана состоит из трёх идентичных микроскопических полостей, содержащих инертный газ (ксенон) и имеющих два электрода, спереди и сзади. После того, как к электродам будет приложено сильное напряжение, плазма начнёт перемещаться. При этом она излучает ультрафиолетовый свет, который попадает на люминофоры в нижней части каждой полости. Люминофоры излучают один из основных цветов: красный, зелёный или синий. Затем цветной свет проходит через стекло и попадает в глаз зрителя. Таким образом, в плазменной технологии пиксели работают, подобно люминесцентным трубкам, но создание панелей из них довольно проблематично. Первая трудность - размер пикселя. Суб-пиксель плазменной панели имеет объём 200 мкм x 200 мкм x 100 мкм, а на панели нужно уложить несколько миллионов пикселей, один к одному. Во-вторых, передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома - он проводит ток намного лучше, но, к сожалению, непрозрачен.

Наконец, требуется подобрать правильные люминофоры. Они зависят от требуемого цвета:

  • Зелёный: Zn 2 SiO 4:Mn 2+ / BaAl 12 O 19:Mn 2+
  • Красный: Y 2 O 3:Eu 3+ / Y0,65Gd 0,35 BO 3:Eu 3
  • Синий: BaMgAl 10 O 17:Eu 2+

Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего. Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх суб-пикселей. На плазменной панели 1280x768 пикселей присутствует примерно три миллиона суб-пикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления суб-пикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние - в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, - подобно сканированию лучом на ЭЛТ-мониторах.

Немного истории.

Первый прототип плазменного дисплея появился в 1964 году. Его сконструировали ученые Иллинойского университета Битцер и Слоттоу как альтернативу кинескопному экрану для компьютерной системы Plato. Дисплей этот был монохромным, не требовал дополнительной памяти и сложных электронных схем и отличался высокой надежностью. Его предназначением было в основном индицировать буквы и цифры. Однако в качестве компьютерного монитора он так и не успел, как следует реализоваться, поскольку благодаря полупроводниковой памяти, появившейся в конце 70-х, кинескопные мониторы оказались дешевле в производстве. Зато плазменные панели благодаря малой глубине корпуса и большому экрану получили распространение в качестве информационных табло в аэропортах, вокзалах и на биржах. Информационными панелями плотную занялась компания IBM, а в 1987 году бывший студент Битцера, доктор Лэрри Вебер, основал компанию Plasmaco, которая занялась производством монохромных плазменных дисплеев. Первый же цветной плазменный дисплей 21" был представлен фирмой Fujitsu в 1992 году. Разрабатывался он совместно с конструкторским бюро Иллинойского университета и компанией NHK. А в 1996 Fujitsu покупает компанию Plasmaco со всеми ее технологиями и заводом, и выбрасывает на рынок первую коммерчески успешную панель плазмы – Plasmavision с экраном разрешения 852 х480 диагональю 42" с прогрессивной разверткой. Началась продажа лицензий другим производителям, первым среди которых стал Pioneer. Впоследствии, активно развивая плазменную технологию, Pioneer, пожалуй, больше всех остальных преуспел на плазменном поприще, создав целый ряд великолепных моделей плазмы.

При всем ошеломляющем коммерческом успехе плазменных панелей качество изображения поначалу было, мягко сказать, удручающим. Стоили же они баснословных денег, но быстро завоевали аудиторию благодаря тому, что выгодно отличались от кинескопных монстров плоским корпусом, дававшим возможность повесить телевизор на стену, и размерами экрана: 42 дюйма по диагонали против 32 (максимум для кинескопных телевизоров). В чем же был основной дефект первых плазменных мониторов? Дело в том, что при всей красочности картинки они совершенно не справлялись с плавными цветовыми и яркостными переходами: последние распадались на ступеньки с рваными краями, что на подвижном изображении выглядело вдвойне ужасно. Оставалось только гадать, отчего возникал данный эффект, о котором, как будто сговорившись, ни слова не писали средства массовой информации, превозносившие новые плоские дисплеи. Однако лет через пять, когда сменилось несколько поколений плазмы, ступеньки стали встречаться все реже, да и по другим показателям качество изображения стало стремительно расти. К тому же помимо 42-дюймовых появились панели 50" и 61". Постепенно росло и разрешение, и где-то на этапе перехода к 1024 х 720 плазменные дисплеи были, что называется, в самом соку. Совсем же недавно плазма успешно переступила новый порог качества, войдя в привилегированный круг устройств Full HD. В настоящее время наиболее популярными являются размеры экрана 42 и 50 дюймов по диагонали. В придачу к стандартному 61" появился размер 65", а также рекордный 103". Впрочем, настоящий рекорд только грядет: компания Matsushita (Panasonic) недавно анонсировала панель 150"! Но это, как и модели 103" (кстати, на основе панелей Panasonic плазмы такого же размера производит известная американская компания Runco), штука неподъемная как в прямом, так и в еще более прямом смысле (вес, цена).

Технологи плазменных панелей.

Просто о сложном.

Вес был упомянут неспроста: плазменные панели очень много весят, особенно модели больших размеров. Это является следствием того, что плазменная панель в основном состоит из стекла, если не считать металлическое шасси и пластиковый корпус. Стекло здесь необходимо и незаменимо: оно останавливает вредное ультрафиолетовое излучение. По этой же причине никто не производит люминесцентные лампы из пластика, только из стекла.

Вся конструкция плазменного экрана - это два листа стекла, между которыми находится ячеистая структура пикселей, состоящих из триад субпикселей - красных, зеленых и голубых. Ячейки заполнены инертными, т. н. «благородными» газами - смесью неона, ксенона, аргона. Проходящий через газ электрический ток заставляет его светиться. По сути, плазменная панель представляет собой матрицу из крошечных флуоресцентных ламп, управляемых при помощи встроенного компьютера панели. Каждый пиксель-ячейка является своеобразным конденсатором с электродами. Электрический разряд ионизирует газы, превращая их в плазму - т. е. электрически нейтральную, высокоионизированную субстанцию, состоящую из электронов, ионов и нейтральных частиц. На самом деле каждый пиксель делится на три субпикселя, содержащих красный(R), зеленый(G) либо синий(B) люминофор: Зелёный: Zn2SiO4:Mn2+ / BaAl12O19:Mn2+ Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3 Синий: BaMgAl10O17:Eu2+ Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего. Фактически вертикальные ряды R, G и B просто поделены на отдельные ячейки горизонтальными перетяжками, что делает структуру экрана очень похожей на масочный кинескоп обычного телевизора. Сходство с последним еще и в том, что здесь используется тот же цветной фосфор, которым покрыты изнутри ячейки субпикселей. Только поджог фосфорного люминофора осуществляется не электронным лучом, как в кинескопе, а ультрафиолетовым излучением. Для создания разнообразных оттенков цветов интенсивность свечения каждого субпикселя контролируется независимо. В кинескопных телевизорах это делается путем изменения интенсивности потока электронов, в `плазме` - при помощи 8-битной импульсной кодовой модуляции. Общее число цветовых комбинаций в этом случае достигает 16,777,216 оттенков.

Как получается свет. Основа каждой плазменной панели - это собственно плазма, т. е. газ, состоящий из ионов (электрически заряженных атомов) и электронов (отрицательно заряженных частиц). В нормальных условиях газ состоит из электрически нейтральных, т. е. не имеющих заряда частиц.

Если ввести в газ большое число свободных электронов, пропустив через него электрический ток, ситуация меняется радикально. Свободные электроны сталкиваются с атомами, `выбивая` все новые и новые электроны. Без электрона меняется баланс, атом приобретает положительный заряд и превращается в ион.

Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы стремятся друг к другу.

Среди всего этого хаоса частицы постоянно сталкиваются. Столкновения `возбуждают` атомы газа в плазме, заставляя их высвобождать энергию в виде фотонов в ультрафиолетовом спектре.

При попадании фотонов на люминофор, частицы последнего возбуждаются, испускают свои собственные фотоны, но они уже окажутся видимы и приобретут форму световых лучей.

Между стеклянными стенками располагаются сотни тысяч ячеек, покрытых люминофором, который светится красным, зеленым и голубым светом. Под видимой стеклянной поверхностью - по всему экрану - расположены длинные, прозрачные дисплейные электроды, изолированные сверху листом диэлектрика, а снизу слоем оксида магния (MgO).

Чтобы процесс был стабильным и управляемым, необходимо обеспечить достаточное количество свободных электронов в толще газа плюс достаточно высокое напряжение (порядка 200 В), которое заставит ионный и электронные потоки двигаться навстречу друг другу.

А чтобы ионизация происходила мгновенно, помимо управляющих импульсов на электродах присутствует остаточный заряд. К электродам управляющие сигналы подводятся по горизонтальным и вертикальным проводникам, образующим адресную сетку. Причем вертикальные (дисплейные) проводники представляют собой токопроводящие дорожки на внутренней поверхности защитного стекла с передней стороны. Они прозрачны (слой окиси олова с примесью индия). Горизонтальные же (адресные) металлические проводники располагаются с тыльной стороны ячеек.

Ток течет от дисплейных электродов (катодов) к анодным пластинкам, повернутым под углом 90 градусов относительно дисплейных электродов. Защитный слой служит для исключения прямого контакта с анодом.

Под дисплейными электродами располагаются уже упомянутые нами ячейки пикселей RGB, выполненные в форме крохотных коробочек, изнутри покрытых цветным люминофором (каждая „цветная“ коробочка - красная, зеленая или голубая - называется подпикселем). Под ячейками находится конструкция из адресных электродов, расположенных под углом 90 градусов к дисплейным электродам и проходящих через соответствующие цветные подпиксели. Следом располагается защитный для адресных электродов уровень, закрытый задним стеклом.

Прежде, чем плазменный дисплей будет запаян, в пространство между ячейками впрыскивается под низким давлением смесь двух инертных газов - ксенона и неона. Для ионизации конкретной ячейки создается разность напряжений между дисплейным и адресным электродами, расположенными друг напротив друга выше и ниже ячейки.

Немного реалий.

На самом деле структура реальных плазменных экранов гораздо сложнее, да и физика процесса совсем не так проста. Помимо описанной выше матричной сетки существует и другая разновидность - сопараллельная, предусматривающая дополнительный горизонтальный проводник. Кроме этого, тончайшие металлические дорожки дублируют для выравнивания потенциала последних по всей длине, которая довольно значительна (1 м и более). Поверхность электродов покрыта слоем окиси магния, который выполняет изолирующую функцию и одновременно обеспечивает вторичную эмиссию при бомбардировке положительными ионами газа. Существуют и различные типы геометрии пиксельных рядов: простая и «вафельная» (ячейки разделены двойными вертикальными стенками и горизонтальными перемычками). Прозрачные электроды могут выполняться в форме двойного Т или меандра, когда они как бы переплетаются с адресными, хотя и находятся в разных плоскостях. Существует множество и других технологических хитростей, направленных на повышение эффективности плазменных экранов, которая изначально была довольно низкой. С этой же целью производители варьируют газовый состав ячеек, в частности, увеличивают процентное содержание ксенона с 2 до 10%. Кстати, газовая смесь в ионизированном состоянии слегка светится и сама по себе, поэтому, дабы устранить загрязнение спектра люминофоров этим свечением, в каждой ячейке устанавливают миниатюрные светофильтры.

Управление сигналом.

Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх субпикселей. На плазменной панели 1280x768 пикселей присутствует примерно три миллиона субпикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления субпикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние - в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, - подобно сканированию лучом на ЭЛТ-мониторах. Управление пикселями осуществляется с помощью трех типов импульсов: стартовых, поддерживающих и гасящих. Частота - порядка 100 кГц, хотя известны идеи дополнительной модуляции управляющих импульсов радиочастотами (40 МГц), что обеспечит более равномерную плотность разряда в толще газа.

По сути, управление свечением пикселей носит характер дискретной широтно-импульсной модуляции: пикселей светятся ровно столько, сколько длится поддерживающий импульс. Длительность же его при 8-битной кодировке может принимать 128 дискретных значений, соответственно, получается такое же количество градаций яркости. Уж не в этом ли была причина рваных градиентов, распадающихся на ступеньки? Плазма более поздних поколений постепенно наращивала разрешение: 10, 12, 14 бит. Последние модели Runco, относящиеся к категории Full HD, используют 16-битную обработку сигнала (вероятно, и кодировку также). Так или иначе, ступеньки исчезли и больше, будем надеяться, не появятся.

Помимо самой панели.

Постепенно совершенствовалась не только сама панель, но и алгоритмы обработки сигнала: масштабирования, прогрессивного преобразования, компенсации движений, подавления шумов, оптимизации цветосинтеза и пр. У каждого производителя плазмы появился свой набор технологий, частично дублирующий чужие под другими названиями, но частично и свои. Так, почти все использовали алгоритмы масштабирования и адаптивного прогрессивного преобразования DCDi Faroudja, в то время как некоторые заказывали оригинальные разработки (например, Vivix у Runco, Advanced Video Movement у Fujitsu, Dynamic HD Converter у Pioneer и т. д.). В целях повышения контрастности вносились коррективы в структуру управляющих импульсов и напряжений. Для увеличения яркости в форму ячеек вводились дополнительные перемычки для увеличения покрытой люминофором поверхности и снижения засветки соседних пикселей (Pioneer). Постепенно росла роль «интеллектуальных» алгоритмов обработки: вводилась покадровая оптимизация яркости, система динамического контраста, продвинутые технологии цветосинтеза. Корректировки в исходный сигнал вносились не только исходя из характеристик самого сигнала (насколько темным или светлым являлся текущий сюжет или насколько быстро движутся объекты), но и из уровня внешней освещенности, который отслеживался с помощью встроенного фотосенсора. С помощью продвинутых алгоритмов обработки удалось достичь просто фантастических успехов. Так, компания Fujitsu путем интерполяционного алгоритма и соответствующих доработок процесса модуляции добилась увеличения количества градаций цвета в темных фрагментах до 1019, что намного превышает собственные возможности экрана при традиционном подходе и соответствует чувствительности человеческого зрительного аппарата (технология Low Brightness Multi Gradation Processing). Эта же компания разработала метод раздельной модуляции четных и нечетных управляющих горизонтальных электродов (ALIS), который затем использовался в моделях Hitachi, Loewe и др. Метод давал повышенную четкость и уменьшал зубчатость наклонных контуров даже без дополнительной обработки, в связи, с чем в спецификациях использовавших его моделей плазмы появился необычный показатель разрешения 1024 × 1024. Такое разрешение, конечно, являлось виртуальным, но эффект оказался весьма впечатляющим.

Достоинства и недостатки.

Плазма - это дисплей, который, подобно кинескопному телевизору, не использует светоклапаны, а излучает уже модулированный свет непосредственно фосфорными триадами. Это в определенной степени роднит плазму с электронно-лучевыми трубками, столь привычными и доказавшими свою состоятельность на протяжении нескольких десятилетий.

У плазмы заметно более широкий охват цветового пространства, что также объясняется спецификой цветосинтеза, который формируется «активными» фосфорными элементами, а не путем пропускания светового потока лампы через светофильтры и светоклапаны.

Кроме того, ресурс плазмы около 60000 часов.

Итак, плазменные телевизоры это:

Большой размер экрана + компактность + отсутствие элемента мерцания; - Высокая четкость изображение; - Плоский экран, не имеющий геометрических искажений; - Угол обзора 160 градусов по всем направлениям; - Механизм не подверженный влиянию магнитных полей; - Высокие разрешение и яркость изображения; - Наличие компьютерных входов; - Формат кадра 16:9 и наличие режима прогрессивная развертка.

В зависимости от ритма пульсации тока, который пропускается через ячейки, интенсивность свечения каждого субпикселя, контроль над которым осуществлялся независимо, будет разной. Увеличивая или уменьшая интенсивность свечения, можно создавать разнообразные цветовые оттенки. Благодаря такому принципу работы плазменной панели удаётся получить высокое качество изображения без цветовых и геометрических искажений. Слабой стороной является относительно низкая контрастность. Это связано с тем, что на ячейки постоянно должен подаваться ток низкого напряжения. В противном случае время отклика пикселей (их загорание и затухание) будет увеличено, что недопустимо.

Теперь о недостатках.

Передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома - он проводит ток намного лучше, но, к сожалению, непрозрачен. Боится плазма и не очень деликатной транспортировки. Потребление электроэнергии весьма значительное, хотя в последних поколениях его удалось существенно снизить, заодно исключив и шумные вентиляторы охлаждения.