Схема светомузыки. Цветомузыка самодельная из светодиодов

О цветомузыке как направлении технического творчества впервые заговорили более четверти века назад. Тогда и стали появляться описания разнообразных по сложности приставок к радиоустройствам (радиоприемникам, магнитофонам, электропроигрывателям), позволяющих получать на прозрачном экране цветные сполохи в такт с исполняемой мелодией. Причем высвечиваемая цветовая гамма была подчинена, как и в сегодняшних устройствах, музыкальному строю произведения: нижним частотам соответствовали красные тона на экране, средним - желтые или зеленые, высшим - голубые или синие.

На отдельных элементах «B», «C», «D» ОУ К1401УД2 выполнены фильтры разных частот: «высокой», «средней» и «низкой». Элемент «А» построен по схеме предварительного усилитель входящего сигнала. Трансформатора нужен для повышения сигнала и гальванической развязки аудио выхода и схемы цветомузыки.

Эта конструкция с оригинальными световыми эффектами достаточно проста и надежна. Основным элементом устройства является микроконтроллер PIC12F629. Управление изменение уровня яркости светодиодов радиолюбительской разработки происходит за счет широтной импульсной модуляции.

Схема цветомузыки своими руками с индикатором

Если встроить такую приставку в радиоприемник, то в такт с музыкой будет освещаться разноцветными огнями шкала настройки либо вспыхивать три цветовых сигнала на лицевой панели - приставка станет цветовым индикатором настройки.

Как и в подавляющем большинстве конструкций, схема цветомузыки своими руками, показанная на рисунке в верху статьи имеет частотное разделение сигналов звуковой частоты, воспроизводимых радиоприемником, по трем каналам. Первый канал схемы цветомузыки своими руками выделяет низшие частоты - им соответствует красный цвет свечения, второй канал - средние (желтый цвет), третий - высшие (зеленый цвет). Для этого в приставке использованы соответствующие фильтры. Так, в канале низших частот стоит фильтр R5C3, ослабляющий средние и высшие частоты. Прошедший через него сигнал низших частот детектируется диодом VD3. Появляющееся на базе транзистора VT3 отрицательное напряжение открывает этот транзистор, и светодиод HL3, включенный в его коллекторную цепь, зажигается. Чем больше амплитуда сигнала, тем сильнее открывается транзистор, тем ярче горит светодиод. Для ограничения максимального тока через светодиод последовательно с ним включен резистор R9. При отсутствии этого резистора светодиод может выйти из строя.

Входной сигнал на фильтр поступает с подстроечного резистора R3, который подключен к выводам динамической головки радиоприемника. Подстроечным резистором устанавливают нужную яркость светодиода при данной громкости звука.

В канале средних частот стоит фильтр R4C2, который для высших частот представляет значительно большее сопротивление, чем для средних. В коллекторную цепь транзистора VT2 включен светодиод HL2 желтого цвета свечения. Сигнал на фильтр поступает с движка подстроечного резистора R2.

Канал высших частот состоит из подстроечного резистора R1, фильтра C1R6, ослабляющего сигналы средних и низших частот, и транзистора VT1. Нагрузкой канала является светодиод HL1зеленого цвета свечения с последовательно включенным ограничительным резистором R7.

Питается схема цветомозыки своими руками от того же источника, что и приемник. Питание подается выключателем SA1. Учитывая, что во время свечения одновременно всех светодиодов потребляемый приставкой ток может достигать 50...60 мА, не следует включать приставку на продолжительное время при работе приемника от гальванических элементов или батарей.

Налаживают схему цветомузыки своими руками при средней громкости звука, во время исполнения музыкальных произведений. Движки под-строечных резисторов устанавливают в такое положение, чтобы в такт с музыкой каждый светодиод (или лампа накаливания) вспыхивал достаточно ярко, но ток через него не превышал допустимого (ток контролируют миллиамперметром, включенным последовательно со светодиодом). Если яркость свечения будет недостаточна даже при наибольшей громкости звука и верхнем по схеме положении движка подстроечного резистора, следует либо заменить транзистор другим, с большим коэффициентом передачи тока, либо подобрать резистор в цепи светодиода с меньшим сопротивлением.

Подобную приставку можно собрать и по несколько иному варианту, с переменным резистором, позволяющим устанавливать нужную яркость вспышек светодиодов (или ламп накаливания) в зависимости от громкости звука приемника.

Схема цветомузыки своими руками модернизированный вариант

Сигнал с динамической головки теперь поступает на повышающий трансформатор Т1, ко вторичной обмотке которого подключен переменный резистор R1. С движка резистора сигнал подается на три фильтра, а с них - на транзисторы, в коллекторных цепях которых установлены соответствующие (по цвету свечения) светодиоды с ограничительными резисторами.


Как и в предыдущем случае, вместо светодиодов можно установить лампы накаливания, но заменять транзисторы на этот раз не придется - используемые транзисторы допускают ток коллектора до 300 мА.

Трансформатор Т1 - выходной от любого малогабаритного транзисторного радиоприемника. Обмотка I - низкоомная (она рассчитана на подключение динамической головки), обмотка II - высокоомная (используются обе половины обмотки).

Налаживания приставка не требует. Но если яркость свечения светодиодов будет недостаточна даже при наибольшей громкости и максимальном напряжении, снимаемом с движка переменного резистора (когда движок находится в верхнем по схеме положении), следует уменьшить сопротивление ограничительных резисторов в коллекторной цепи транзисторов, либо заменить транзисторы другими, с большим коэффициентом передачи тока.

Предыдущие приставки можно считать своеобразными игрушками, позволяющими познакомиться с принципом работы цветомузыкального устройства. Предлагаемая же приставка - более серьезная конструкция, способная управлять разноцветным освещением небольшого экрана.

Сигнал на вход приставки (разъем XS1) по-прежнему поступает с выводов динамической головки усилителя звуковой частоты радиоприемника или другого радиоустройства (магнитофона или телевизора, электропроигрывателя или трансляционного трехпрограммного громкоговорителя). Переменным резистором R1 устанавливают общую яркость экрана, особенно по каналу высших частот, собранному на транзисторе VT1. Яркость же свечения ламп других каналов можно устанавливать «своими» переменными резисторами - R2 и R3.

Фильтры, выделяющие сигналы определенной частоты, выполнены, как и в предыдущих случаях, из цепочек резисторов и конденсаторов. Частота разделения и полоса пропускаемых частот того или иного фильтра зависит от номиналов этих деталей. Так, в канале высших частот на указанные параметры влияют номиналы конденсатора С1 и резистора R5, в канале средних частот - конденсаторов С2, С 4 и резистора R2, в канале нижних частот - конденсаторов СЗ, С5 и резистора R3.

Выделенные фильтрами сигналы поступают на усилители, собранные на мощных транзисторах (VT1 - VT3). В коллекторной цепи каждого транзистора стоит нагрузка из двух ламп накаливания, соединенных параллельно. Причем каждая пара ламп окрашена в определенный цвет: EL1 и EL2 - в голубой (можно синий), EL3 и EL4 - в зеленый, EL5 и EL6 - в красный.

Питается приставка от простейшего однополупериодного выпрямителя на диоде VD1. Выпрямленное напряжение сглаживается оксидным конденсатором С6 сравнительно большой емкости. Хотя пульсации выпрямленного напряжения остаются немалыми, особенно при максимальной яркости свечения ламп, они не сказываются на работе приставки.

В приставке могут быть использованы транзисторы серий П213 - П216 с возможно большим коэффициентом передачи тока. Постоянные резисторы - МЛТ-0,25 (подойдут и МЛТ-0,125), переменные - любого типа (например, СП-I, СПО), конденсаторы - К50-6. Вместо Д226Б можно использовать другой диод этой серии. Трансформатор питания - готовый или самодельный, мощностью не менее 10 Вт и с напряжением на обмотке II 6...7 В (например, обмотка накала ламп любого трансформатора питания сетевого лампового радиоприемника). Лампы накаливания - МН 6,3-0,28 или МН 6,3-0,3 (на напряжение 6,3 В и ток 0,28 и 0,3 А соответственно).

Часть указанных деталей смонтирована на плате, которую вместе с трансформатором питания укрепляют внутри корпуса. Переменные резисторы и выключатель питания крепят к лицевой стенке корпуса. Транзисторы прикрепите к плате держателями (они придаются к транзисторам - не забывайте об этом при приобретении транзисторов). Под шляпки транзисторов в плате можно вырезать отверстия, хотя делать это не обязательно.

Экран с лампами допустимо расположить на крышке корпуса. Конструкция экрана - произвольная. Главное, чтобы лампы были равномерно размещены по поверхности экрана (конечно, на некотором расстоянии от него), а сам экран хорошо поглощал свет.

В качестве экрана обычно используют пластину органического стекла с матовой поверхностью. Если такого стекла не окажется, подойдет обычное прозрачное органическое стекло, но одну из сторон пластины придется обработать мелкозернистой наждачной бумагой до получения матовой поверхности.

Чтобы добиться большей яркости освещения экрана, лампы должны быть расположены внутри небольшой шкатулки, а экран укреплен вместо лицевой стенки шкатулки. Кроме того, лампы желательно ввернуть в рефлекторы, вырезанные из жести от консервной банки. Возможен и такой вариант - все лампы ввинчивают в отверстия, просверленные в общей жестяной пластине, установленной на некотором расстоянии от экрана.

Если у вас окажется плафон настольной лампы, изготовленный из гранулированного органического стекла, смонтируйте детали приставки в нем, а лампы расположите на двух металлических дисках-держателях, закрепленных на вертикальной стойке на некотором расстоянии друг от друга. Лампы одного держателя должны быть обращены баллонами к лампам другого. Кроме того, на каждом держателе устанавливают по одной лампе каждого канала. При работающей приставке на таком экране будут появляться причудливые узоры, меняющие свои оттенки в такт с музыкой.

Перед налаживанием приставки соедините ее входной разъем с выводами динамической головки, например, магнитофона. Затем включите приставку и замерьте напряжение на выводах конденсатора С6 - оно должно быть не менее 7 В.

Следующий этап - подбор режима работы транзисторов. Дело в том, что чувствительность приставки невысокая, и для работы ее от сигнала, снимаемого с динамической головки, нужно установить оптимальное напряжение смещения на базе каждого транзистора. Оно должно быть таким, чтобы лампы были на грани зажигания, но нить их при отсутствии сигнала не светилась.

Начинают подбор режима с одного из каналов, скажем, высших частот, выполненного на транзисторе VT1. Вместо резистора R4 включают цепочку из последовательно соединенных переменного резистора сопротивлением 2,2 кОм и постоянного сопротивлением около 1 кОм. Перемещением движка переменного резистора добиваются начала свечения ламп ELI, EL2, а затем отводят движок немного в обратную сторону до прекращения свечения. Измеряют получившееся общее сопротивление цепочки и впаивают в приставку резистор R4 с таким сопротивлением (или возможно близким).

Если свечения ламп нет даже при выведенном сопротивлении переменного резистора (т. е. при включении между коллектором и базой резистора сопротивлением 1 кОм), следует заменить транзистор другим таким же, но с большим коэффициентом передачи тока. Аналогично подбирают режим работы остальных транзисторов.

Далее включают магнитофон и устанавливают номинальную громкость звучания и максимальный подъем высших частот. Перемещением движка переменного резистора R1 добиваются свечения ламп EL1 и EL2. Движки остальных резисторов должны находиться в нижнем по схеме положении. Если лампы не светятся, это указывает на недостаточную амплитуду входного сигнала. Можно рекомендовать следующее. Последовательно с динамической головкой включите добавочный переменный резистор сопротивлением 30...50 Ом, оставив входные гнезда приставки подключенными ко вторичной обмотке выходного трансформатора магнитофона. Уменьшая громкость звучания динамической головки добавочным резистором, одновременно увеличивайте усиление магнитофона до тех пор, пока не начнут вспыхивать в такт с музыкой лампы EL1 и EL2. После этого ручками переменных резисторов R2 и R3 установите нужное свечение соответственно зеленых и красных ламп.

Когда приставка включена, громкость звучания магнитофона подбирают добавочным резистором, при отключении приставки сопротивление этого резистора желательно вывести до нуля (иначе будет искажаться звук), а громкость, как и прежде, устанавливают регулятором магнитофона.

Многие из вас после изготовления простой цветомузыкальной приставки захотят сделать конструкцию, обладающую большей яркостью свечения ламп, достаточной для освещения экрана внушительных размеров. Задача выполнимая, если воспользоваться автомобильными лампами (на напряжение 12 В) мощностью 4...6 Вт. С такими лампами работает приставка, схема которой приведена на рисунке чуть ниже.

Входной сигнал, снимаемый с выводов динамической головки радиоустройства, поступает на согласующий трансформатор Т2, вторичная обмотка которого подключена через конденсатор С1 к регулятору чувствительности - переменному резистору R1. , Конденсатор С1 в данном случае ограничивает диапазон нижних; частот приставки, чтобы на нее не поступал, скажем, сигнал фона переменного тока (50 Гц).

С движка регулятора чувствительности сигнал поступает далее через конденсатор С2 на составной транзистор VT1VT2. С нагрузки этого транзистора (резистор R3) сигнал подается на три фильтра, «распределяющие» сигнал по каналам. Через конденсатор С4 проходят сигналы высших частот, через фильтр C5R6C6R7 - сигналы средних частот, через фильтр C7R9C8R10 - сигналы низших частот. На выходе каждого фильтра стоит переменный резистор, позволяющий устанавливать нужное усиление данного канала (R4 - по высшим частотам, R7 - по средним, R10 - по низшим). Затем следует двухкаскадный усилитель с мощным выходным транзистором, нагруженным на две последовательно соединенные лампы - они окрашены для каждого канала в свой цвет: EL1 и EL2 - в синий, EL3 и EL4 - в зеленый, EL5 и EL6 - в красный.


Кроме того, в приставке есть еще один канал, собранный на транзисторах VT6, VTIO и нагруженный на лампы EL7 и EL8. Это так называемый канал фона. Нужен он для того, чтобы при отсутствии сигнала звуковой частоты на входе приставки экран слегка подсвечивался нейтральным светом, в данном случае фиолетовым.

В канале фона ячейки фильтра нэт, но регулятор усиления есть - переменный резистор R12. Им устанавливают яркость освещения экрана. Через резистор R13 канал фона связан с выходным транзистором канала средних частот. Как правило, этот канал работает продолжительнее других. Во время работы канала транзистор VT8 открыт, и резистор R13 оказывается подключенным к общему проводу. Напряжения смещения на базе транзистора VT6 практически нет. Этот транзистор, а также VT10 закрыты, лампы EL7 и EL8 погашены.

Как только сигнал звуковой частоты на входе приставки уменьшается или пропадает совсем, транзистор VT8 закрывается, напряжение на его коллекторе возрастает, в результате чего появляется напряжение смещения на базе транзистора VT6. Транзисторы VT6 и VT10 открываются, и лампы EL7, EL8 зажигаются. Степень открывания транзисторов канала фона, а значит, яркость его ламп зависит от напряжения смещения на базе транзистора VT6. А его, в свою очередь, можно устанавливать переменным резистором R12.

Для питания приставки использован однополупериодный выпрямитель на диоде VD1. Поскольку пульсации выходного напряжения значительны, конденсатор фильтра СЗ взят сравнительно большой емкости.

Транзисторы VT1 - VT6 могут быть серий МП25, МП26 или другие, структуры p-n-р, рассчитанные на допустимое напряжение между коллектором и эмиттером не менее 30 В и обладающие возможно большим коэффициентом передачи тока (но не менее 30). С таким же коэффициентом передачи следует применить мощные транзисторы VT7 - VT10 - они могут быть серий П213 - П216. В качестве согласующего (Т2) подойдет выходной трансформатор от переносного транзисторного радиоприемника, например «Альпинист». Его первичная обмотка (высокоомная, с отводом от середины) используется в качестве обмотки II, а вторичная (низкоомная) - в качестве обмотки I. Подойдет и другой выходной трансформатор с коэффициентом передачи (коэффициентом трансформации) 1:7...1:10.

Трансформатор питания Т1 - готовый или самодельный, мощностью не менее 50 Вт и с напряжением на обмотке II 20...24 В при токе до 2 А. Нетрудно приспособить для приставки сетевой трансформатор от лампового радиоприемника. Его разбирают и удаляют все обмотки, кроме сетевой. Сматывая обмотку накала ламп (переменное напряжение на ней 6,3 В), считают число ее витков. Затем поверх сетевой обмотки наматывают проводом ПЭВ-1 1,2 обмотку II, которая должна содержать примерно вчетверо больше витков по сравнению с накальной.

При отсутствии конденсатора СЗ с указанными параметрами можно использовать конденсатор емкостью около 500 мкФ, но выпрямитель собрать по мостовой схеме (в этом случае понадобятся четыре диода).

Диод (или диоды) - любой другой, кроме указанного на схеме, рассчитанный на выпрямленный ток не менее 3 А.

Мощные транзисторы совсем не обязательно крепить к плате металлическими держателями, достаточно приклеить их шляпками к плате. Трансформатор питания, выпрямительный диод и сглаживающий конденсатор укрепляют либо на дне корпуса, либо на отдельной небольшой планке. Переменные резисторы и выключатель питания устанавливают на лицевой панели корпуса, а входной разъем и держатель предохранителя с предохранителем - на задней стенке.

Если лампы освещения предполагается разместить в отдельном корпусе, нужно подключать их к электронной части приставки с помощью разъема на пять контактов. Правда, приставка может выглядеть эффектно и в случае размещения ее элементов в общем корпусе. Тогда экран (например, из органического стекла с матированной поверхностью) устанавливают в вырезе на лицевой стенке корпуса, а за экраном внутри корпуса укрепляют указанные выше автомобильные лампы, баллоны которых заранее окрашивают в соответствующий цвет. За лампами желательно расположить рефлекторы из фольги или белой жести от консервной банки - тогда яркость возрастет.

Теперь о проверке и налаживании приставки. Начинать их следует с измерения выпрямленного напряжения на выводах конденсатора СЗ - оно должно быть около 26 В и падать незначительно при полной нагрузке, когда зажигаются все лампы (конечно, во время работы приставки).

Следующий этап - установка оптимального режима работы выходных трансформаторов, определяющих максимальную яркость свечения ламп. Начинают, скажем, с канала высших частот. Вывод базы транзистора VT7 отсоединяют от вывода эмиттера транзистора VT3 и соединяют его с минусовым проводом питания через цепочку из последовательно соединенных постоянного резистора сопротивлением 1 кОм и переменного сопротивлением 3,3 кОм. Подпаивают цепочку при выключенной приставке. Сначала движок переменного резистора устанавливают в положение, соответствующее максимальному сопротивлению, а затем плавно перемещают его, добиваясь нормального свечения ламп EL1 и EL2. При этом следят за температурой корпуса транзистора - он не должен перегреваться, иначе придется либо снизить яркость ламп, либо установить транзистор на небольшой радиатор - металлическую пластину толщиной 2...3 мм. Измерив получившееся в результате подбора общее сопротивление цепочки, впаивают в приставку резистор R5 с таким или возможно близким сопротивлением, а соединение базы транзистора VT7 с эмиттером VT3 восстанавливают. Возможно, что резистор R5 не придется менять - его сопротивление окажется близким к получившемуся сопротивлению цепочки.

Аналогично подбирают резисторы R8 и R11.

После этого проверяют работу канала фона. При перемещении движка резистора R12 вверх по схеме должны зажигаться лампы EL7 и EL8. Если они работают с недокалом или перекалом, придется подобрать резистор R13.

Далее на вход приставки подают сигнал звуковой частоты амплитудой примерно 300...500 мВ с динамической головки магнитофона, а движок переменного резистора R1 устанавливают в верхнее по схеме положение. Убеждаются в изменении яркости ламп EL3, EL4 и EL7, EL8. Причем при увеличении яркости первых вторые должны гаснуть, и наоборот.

Во время работы приставки переменными резисторами R4, R7, RIO, R12 регулируют яркость вспышек ламп соответствующей окраски, a R1 - общую яркость экрана.

Схема цветомузыки своими руками на тринисторах

Увеличение числа ламп накаливания или использование ламп повышенной мощности требует применения в выходных каскадах приставки транзисторов, рассчитанных на допустимую мощность в несколько десятков и даже сотен ватт. В широкую продажу подобные транзисторы не поступают, поэтому на помощь приходят тринисторы. В каждом канале достаточно использовать один тринистор - он обеспечит работу лампы (или ламп) накаливания мощностью от сотни до тысячи ватт! Маломощные нагрузки совершенно безопасны для тринистора, а для управления мощными его укрепляют на радиаторе, позволяющем отвести от корпуса тринистора излишнее тепло.


Схема одной из простых приставок на тринисторах приведена на рис. ПО. В ней сохранен принцип частотного разделения сигнала звуковой частоты, поступающего (например, с динамической головки звуковоспроизводящего устройства) на входной разъем XS1. С ним соединена первичная обмотка разделительного (и одновременно повышающего) трансформатора Т1.

Ко вторичной обмотке трансформатора подключены цепочки регуляторов усиления каналов, состоящие из последовательно соединенных переменных и постоянных резисторов. С движка переменного резистора сигнал поступает на свой фильтр. Так, к движку резистора R1 подключен фильтр нижних частот, состоящий из конденсатора С1 и катушки индуктивности L1. Он выделяет сигналы частотой ниже 150 Гц. С движком резистора R3 соединен полосовой фильтр L2C2C3, пропускающий сигналы частотой 100...3000 Гц. К движку резистора R5 подключен простейший фильтр верхних частот - конденсатор С4, пропускающий сигналы частотой свыше 2000 Гц.

На выходе каждого фильтра стоит согласующий трансформатор, вторичная (повышающая) обмотка которого подключена к управляющему электроду тринистора. Но подключена обмотка через диод, пропускающий ток только одной полярности. Это сделано для того, чтобы защитить управляющий электрод от обратного напряжения, которое выдерживает не всякий три-нистор.

Как только появляется сигнал, скажем, на выходе фильтра нижних частот, он повышается трансформатором Т2 и поступает на управляющий электрод тринистора VS1. Тринистор открывается, и зажигается лампа EL1 в его анодной цепи. При воспроизведении средних частот вспыхивает лампа EL2, а высших частот - лампа EL3.

Использование разделительных трансформаторов на входе и выходе фильтров надежно развязывает звуковоспроизводящее устройство от питающей сети. Тем не менее, при работе с этой приставкой нужно соблюдать меры предосторожности, особенно при налаживании.

Моточные детали (трансформаторы и катушки индуктивности - дроссели) могут быть как готовые, так и самодельные. Трансформатор Т1 - выходной трансформатор звуковой частоты с коэффициентом трансформации 1:5 - 1:7 от усилителя с выходной мощностью не менее 0,5 Вт. Самодельный трансформатор может быть выполнен на магнитопроводе сечением 3...4 см. Обмотка I содержит 60...80 витков провода ПЭВ-1 0,5...0,7, обмотка II - 300...400 витков такого же провода.

Трансформаторы Т2 - Т4 - согласующие или выходные от усилителей звуковой частоты, с коэффициентом трансформации примерно 1:10. При самостоятельном изготовлении для каждого трансформатора понадобится магнитопровод сечением 1...3 см 2 . Обмотку I выполняют проводом ПЭВ-1 0,3...0,5 (скажем, 100 витков), обмотку II - проводом ПЭВ-1 0,1...0,3 (900...1000 витков).

Катушки индуктивности (дроссели) LI, L2 также могут быть готовые, с указанной на схеме индуктивностью. Для этих целей подойдут, например, первичные или вторичные обмотки согласующих, выходных или сетевых трансформаторов. Конечно, подобрать нужную обмотку удастся только с помощью измерительного прибора. Но в принципе можно обойтись и без него, если устанавливать в устройство поочередно имеющиеся трансформаторы и проверять с помощью генератора звуковой частоты и вольтметра переменного тока амплитудно-частотную характеристику получившегося фильтра (сигнал с генератора подают на входной разъем, а вольтметр подключают к первичной или вторичной обмотке согласующего трансформатора).

Если есть трансформаторное железо, катушки можно изготовить самим. Для этого используют столько трансформаторных пластин, чтобы магнитопровод получился сечением 1...2 см 2 . На магнитопровод наматывают примерно 1200 витков провода ПЭВ-1 0,2...0,3 для получения индуктивности 0,6 Гн либо 900 витков такого же провода для индуктивности 0,4 Гн. Пластины обязательно собирают способом «встык», прокладывая между Ш-образными пластинами и перемычками полоску бумаги или картона толщиной 0,5 мм для получения магнитного зазора. Кстати, изменением этого зазора, т. е. изменением толщины прокладки, можно изменять индуктивность катушки в небольших пределах. Это свойство можно использовать при более точном подборе индуктивности катушек.

Переменные резисторы - любого типа, сопротивлением 100 - 470 Ом, постоянные - МЛТ-0,25 (их сопротивление должно быть примерно в 5 раз меньше переменных). Конденсаторы - МБМ или другие (СЗ и С4, например, можно составить из нескольких параллельно соединенных). Диоды - любые другие, кроме указанных на схеме, рассчитанные на выпрямленный ток не менее 100 мА и обратное напряжение более 300 В. Тринисторы - КУ201К, КУ201Л, КУ202К - КУ202Н.

Детали приставки, кроме переменных резисторов, выключателя, предохранителя и разъемов, размещают на плате, размеры которой зависят от габаритов используемых трансформаторов и катушек индуктивности. Взаимное расположение деталей не влияет на работу приставки, поэтому монтаж можете разработать самостоятельно. Плату устанавливают внутри корпуса, на лицевой панели которого располагают переменные резисторы и выключатель питания, а на задней стенке - держатель предохранителя с предохранителем и разъемы.

В налаживании приставка не нуждается. Надежное включение тринисторов зависит от амплитуды входного сигнала и положения движков переменных резисторов - ими устанавливают яркость свечения ламп экрана. Кстати, лампы (или наборы параллельно либо последовательно соединенных ламп) в каждом канале должны быть мощностью до 100 Вт. Если понадобится подключать более мощные лампы, нужно укрепить каждый три-нистор на радиатор площадью поверхности не менее 100 см 2 . Учтите, что чем больше мощность нагрузки, тем с большей площадью поверхности должен быть радиатор.

Эту конструкцию можно считать более совершенной (но и более сложной) по сравнению с предыдущей. Потому что она содержит не три, а четыре цветовых канала и в каждом канале установлены мощные осветители. Кроме того, вместо пассивных фильтров используются активные, обладающие большей избирательностью и возможностью изменять полосу пропускания (а это нужно для более четкого разделения сигналов по частоте).

Подаваемый на разъем XS1 входной сигнал (как и в предыдущих случаях, его можно снимать с выводов динамической головки звуковоспроизводящего устройства) поступает на первичную обмотку согласующего (и одновременно разделительного) трансформатора Т1 через переменный резистор R1 - им регулируют чувствительность приставки. У трансформатора четыре вторичные обмотки, сигнал с каждой из которых поступает на свой канал. Конечно, заманчиво было бы обойтись одной обмоткой, как в предыдущей приставке, но при этом ухудшится развязка между каналами.

Схемы каналов идентичны, поэтому рассмотрим работу одного из них, скажем, нижних частот, выполненного на транзисторах VT1, VT2 и тринисторе VS1. На этот канал сигнал поступает с обмотки II трансформатора. Параллельно выводам обмотки включен подстроечный резистор R2, которым устанавливают усиление канала. Далее следует согласующий резистор R3 и активный фильтр нижних частот, выполненный на транзисторе VT1.

Нетрудно заметить, что каскад на этом транзисторе - обычный усилитель с положительной обратной связью, глубину которой можно подбирать подстроечным резистором R7. Движок резистора может быть установлен в такое положение, при котором каскад находится на грани возбуждения - в этом случае получится наименьшая полоса пропускания. Такое случается при верхнем по схеме положении движка. Если же движок перемещать вниз по схеме, полоса пропускания фильтра расширяется. Частота фильтра зависит от емкости конденсаторов СЗ - С5. В целом активный фильтр данного канала выделяет сигналы частотой от 100 до 500 Гц.

С выхода фильтра сигнал поступает через диод VD3 и резистор R8 на базу выходного транзистора VT2, в эмиттерную цепь которого включен управляющий электрод тринистора VS1. Тринистор открывается, и вспыхивает лампа (или группа ламп) EL1 красного цвета. Диод VD3 пропускает ток только в положительные полупериоды сигнала, предотвращая тем самым появление обратного напряжения на управляющем электроде тринистора. Резистор R8 ограничивает ток эмиттерного перехода транзистора, a R9 - ток через управляющий переход тринистора.

Второй канал, выполненный на транзисторах VT3, VT4 и тринисторе VS2, реагирует на сигналы в полосе частот 500... 1000 Гц и управляет лампой EL2 желтого цвета. Третий канал (на транзисторах VT5, VT6 и тринисторе VS3) обладает полосой пропускания 1000...3500 Гц и управляет лампой EL3 зеленого цвета. Последний, четвертый канал (на транзисторах VT7, VT8 и тринисторе VS4) пропускает сигналы частотой свыше 3500 Гц (до 20 000 Гц) и управляет лампой EL4 голубого (можно синего) цвета. Для получения указанных результатов в каждом канале применены конденсаторы разной (но для данного канала одинаковой) емкости.

Питаются транзисторные каскады постоянным напряжением, полученным из сетевого с помощью однополупериодного выпрямителя на диоде VD1 и параметрического стабилизатора напряжения на стабилитроне VD2 и балластном резисторе R34. Пульсации выпрямленного напряжения сглаживаются конденсаторами С1 и С2. Анодные цепи тринисторов питаются сетевым напряжением.

Транзисторы в этой приставке могут быть любые из серии КТ315 (кроме КТ315Е), но с возможно большим коэффициентом передачи тока. Тринисторы - такие же, что и в предыдущей конструкции. Диод VD1 - любой другой, рассчитанный на обратное напряжение не ниже 300 В и выпрямленный ток до 100 мА; VD3 - VD6 - любые из серии Д226.

Стабилитрон Д815Ж можно заменить последовательно соединенными двумя стабилитронами Д815Г (при этом несколько возрастет постоянное напряжение на выводах конденсатора С2) или тремя КС156А.

Оксидный конденсатор С1 - КЭ или другой, на номинальное напряжение не ниже 350 В; С2 - К50-6; остальные конденсаторы - БМТ, МБМ или аналогичные. Переменный резистор - СП-1, подстроечные - СПЗ-16, постоянный R34 - остеклованный ПЭВ-10 (мощностью 10 Вт), остальные резисторы - МЛТ-0.25.

Согласующий трансформатор выполнен на магнитопроводе Ш20Х20, но подойдет и другой, практически с любым сечением - важно, чтобы на нем разместились все обмотки. Обмотка I (ее наматывают первой) содержит 50 витков провода ПЭВ-1 0,25...0,4. Поверх нее прокладывают несколько слоев лакоткани или другой хорошей изоляции и наматывают остальные обмотки - по 2000 витков провода ПЭВ-1 0,08. Можно наматывать все вторичные обмотки одновременно - в четыре провода.

Все детали приставки, кроме переменного резистора, сетевого выключателя, предохранителя и разъемов, смонтированы на плате (рис. 112) из изоляционного материала. Конденсатор С1 (если он типа КЭ с гайкой) и тринисторы укрепляют в отверстиях в плате. Так же можно крепить и стабилитрон Д815Ж-

Для приставки можно изготовить небольшой корпус в виде шкатулки. Внутри укрепляют плату, на верхней крышке размещают разъемы XS2 - XS5(обыкновенные сетевые розетки), на передней стенке - переменный резистор и сетевой выключатель Q1, на задней - разъем XS1 (например, СГ-3) и держатель предохранителя с предохранителем.

Экран может быть любой конструкции, выносной либо совмещенный с корпусом-шкатулкой приставки. Не менее эффектно работает приставка... без экрана. В этом случае в выходные розетки включают осветители в виде фонарей с рефлекторами и с соответствующими светофильтрами. Фонарями могут быть, например, используемые в фотографии фонари красного света. Вместо красного стекла в каждый такой фонарь вставляют нужный светофильтр, заменяют сетевую лампу более мощной, а заднюю стенку фонаря оклеивают изнутри фольгой. Фонари укрепляют на общей подставке и направляют на потолок - он и будет служить экраном.

Поскольку детали приставки находятся под напряжением сети, нужно соблюдать осторожность при налаживании. Измерительные приборы подключайте к приставке заранее, до включения ее в сеть, а детали и проводники перепаивайте только при вынутой из сетевой розетки питающей вилке ХР1.

Сразу же после включения приставки нужно измерить напряжение на выводах конденсатора С2 или стабилитрона VD2 - оно должно быть около 18 В (это напряжение зависит от напряжения используемого стабилитрона). Если напряжение меньше, измерьте постоянное напряжение на конденсаторе С1 (около 300 В), а затем проверьте сопротивление резистора R34.

Затем подайте на вход приставки сигнал с генератора звуковой частоты амплитудой около 100 мВ, движки подстроечных резисторов установите примерно в среднее положение, а переменного - в крайнее верхнее. Установив на генераторе ЗЧ частоту около 300 Гц, плавно перемещайте движок переменного резистора в нижнее по схеме положение (уменьшайте его сопротивление). Если в каком-то из положений начнет светиться лампа EL1 (на время налаживания в розетку XS2, как и в другие розетки, можно включить настольную или другую лампу), нужно попытаться перестраивать частоту генератора в диапазоне 100...500 Гц и найти резонансную частоту фильтра нижних частот. При подходе к резонансной частоте яркость лампы будет возрастать, поэтому амплитуду сигнала на входе фильтра можно уменьшать переменным резистором R1.

Найдя резонансную частоту, нужно установить переменным резистором почти наибольшую яркость, т. е. такую, при которой лампа может светиться еще больше (если увеличить амплитуду входного сигнала), а затем наступит насыщение. Этот момент лучше всего определять по стрелке вольтметра переменного тока, подключенного параллельно лампе. Изменяя частоту генератора (при неизменной амплитуде его выходного сигнала) в обе стороны от резонансной, определяют моменты уменьшения яркости лампы (или напряжения контрольного вольтметра) примерно вдвое. Замечают получившиеся частоты и сравнивают их с вышеуказанными. Если они отличаются значительно, перемещают движок подстроечного резистора вверх или вниз по схеме. Когда разность частот (т. е. полосу пропускания) нужно увеличить, движок перемещают вниз по схеме, и наоборот.

Аналогично настраивают другие каналы, подавая на вход приставки сигналы соответствующих частот. После этого проверяют яркость свечения ламп (или напряжения на них) на резонансных частотах активных фильтров каналов и уравнивают их подстроенными резисторами R2, R10, R18, R26. Теперь приставка окажется настроенной, и движки подстроечных резисторов можно законтрить нитрокраской. Чувствительность приставки, а значит, яркость свечения ламп, в зависимости от амплитуды входного сигнала устанавливают во время работы переменным резистором.

Заканчивая рассказ о цветомузыкальных приставках, необходимо обратить внимание на то, что во всех случаях указывалось четкое соответствие цвета ламп частотам каналов: нижние частоты - красный, средние - желтый или зеленый, высшие - голубой или синий. Но на практике этого придерживаются не всегда. При воспроизведении одной мелодии «цветовая» картина на экране получается лучше при указанном соответствии, а при воспроизведении другой мелодии удается добиться большей выразительности с другим сочетанием цветов. Поэтому можете самостоятельно экспериментировать с приставками, подключая лампы к разным каналам. Для этой цели можете установить в приставку переключатель на соответствующее число положений.

ЛИТЕРАТУРА

    Андрианов И. И. Приставки к радиоприемным устройствам

    Борисов В., Партии А. Основы цифровой техники. -

    Борисов В. Г. Юный радиолюбитель. - М.: Радио и связь, 1985.

Пошаговая сборка несложной конструкции светодиодной цветомузыки, с попутным изучением радиолюбительских программ

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Собираем светодиодную светомузыку (цветомузыку).
Часть 1.

На сегодняшнем занятии в Школе начинающего радиолюбителя мы начнем собирать светодиодную светомузыку . В ходе этого занятия мы не только соберем светомузыку, но и изучим очередную радиолюбительскую программу “Cadsoft Eagle” – несложное, но в тоже время мощное комплексное средство для разработки печатных плат и научимся изготавливать печатные платы с использованием пленочного фоторезиста. Сегодня мы выберем схему, рассмотрим как она работает, подберем детали.

Светомузыкальные (цветомузыкальные) устройства были очень популярны во времена Советского Союза. Были они, в основном, трехцветными (красный, зеленый или желтый и синий) и собирались чаще всего по простейшим схемам на более-менее доступных тиристорах КУ202Н (которые, если мне не изменяет память, в магазинах стоили более 2 рублей, т.е. были довольно дорогими) и простейших входных фильтрах звуковой частоты на катушках намотанных на отрезках ферритовых стержней от радиоприемников. Выполнялись они в основном в двух вариантах – в виде трехцветных прожекторов на лампочках освещения 220 вольт, или делался специальный корпус в виде коробки, где внутри располагалось по некоторому количеству лампочек каждого цвета, а спереди ящик закрывался матовым стеклом, что позволяло получать на таком экране причудливое световое сопровождение музыки. Так-же, для экрана применяли обычное стекло, а сверху на него наклеивали для лучшего рассеивания света мелкие осколки автомобильных стекол. Вот такое было трудное детство. Зато сегодня, в век развития непонятного капитализма в нашей стране, есть возможность собрать светомузыкальное устройство на любой вкус, чем мы и займемся.

За основу мы возьмем схему светодиодной светомузыки опубликованной на сайте:

К этой схеме мы добавим еще два элемента:

1. . Так как у нас на входе будет стереосигнал, и чтобы не терять звук с какого-то канала, или не соединять два канала напрямую между собой, мы применим вот такой входной узел (взят с другой схемы светомузыки):

2. Блок питания устройства . Схему светомузыки мы дополним блоком питания собранным на микросхемном стабилизаторе КР142ЕН8:

Вот приблизительно такой комплект деталей мы должны собрать:

Светодиоды для этого устройства можно использовать любого типа, но обязательно сверхяркие и разного цвета свечения. Я буду использовать сверхяркие узконаправленные светодиоды, свет от которых будет направлен на потолок. Вы, естественно, можете применить другой вариант светового отображения звукового сигнала и использовать другой тип светодиодов:

Как работает данная схема . Стереосигнал с источника звука поступает на входной узел, который суммирует сигналы с левого и правого канала и подает его на переменные сопротивления R6, R7, R8 которыми регулируется уровень сигнала для каждого канала. Далее сигнал поступает на три активных фильтра, собранных по идентичной схеме на транзисторах VT1-VT3, которые отличаются только номиналами конденсаторов. Смысл работы этих фильтров заключается в том, что они пропускают через себя только строго определенную полосу звукового сигнала, отсекая сверху и снизу ненужный диапазон частот звукового сигнала. Верхний (по схеме) фильтр пропускает полосу 100-800 Гц, средний – 500-2000 Гц и нижний – 1500-5000 Гц. С помощью подстроечных резисторов R5, R12 и R16 можно сдвигать в любую сторону пропускаемую полосу. Если вы хотите получить другие полосы пропускания сигнала фильтров, то можно поэкспериментировать с номиналами конденсаторов, входящих в фильтры. Далее сигналы с фильтров поступают на микросхемы А1-А3 – LM3915. Что это за микросхемы.

Микросхемы LM3914, LM3915 и LM3916 фирмы National Semiconductors позволяют строить светодиодные индикаторы с различными характеристиками - линейной, растянутой линейной, логарифмической, специальной для контроля аудиосигнала. При этом LM3914 – для линейной шкалы, LM3915 – для логарифмической шкалы, а LM3916 – для специальной шкалы. Мы используем микросхемы LM3915 – с логарифмической шкалой контроля аудиосигнала.

Начальная страница даташита микросхемы:

(327.0 KiB, 4,026 hits)

Вообще, я вам советую, сталкиваясь с новым, неизвестным радиокомпонентом, ищите на просторах интернета его даташит и изучайте его, тем более, что встречаются и переведенные на русский язык даташиты.

К примеру, что мы можем подчерпнуть с первого листа даташита LM3915 (даже с минимальным знанием английского языка, а в крайнем случае с использованием словаря):
- эта микросхема – индикатор уровня аналогового сигнала с логарифмической шкалой отображения и шагом 3 dB;
– можно подключать как светодиоды, так и LCD индикаторы;
– индикацию можно осуществлять в двух режимах: “точка” и “столбик”;
– максимальный выходной ток на каждый светодиод – 30 мА;
– и так далее…

Кстати, чем отличается “точка” от “столбика”. В режиме “точка”, при включении следующего светодиода, предыдущий гаснет, а в режиме”столбик” гашение предыдущих светодиодов не происходит. Для переключения в режим “точка” достаточно отсоединить вывод 9 микросхемы от “+” источника питания, или подключить его к “земле”. Кстати, на этих микросхемах можно собирать очень полезные и интересные схемы.

Продолжим. Так как на входы микросхем подается переменное напряжение, то светящийся столбик из светодиодов будет с неравномерной яркостью, т.е. с увеличением уровня входного сигнала будут не просто зажигаться очередные светодиоды, но и меняться яркость их свечения. Ниже привожу таблицу порогового включения каждого светодиода для разных микросхем в вольтах и децибелах:

Характеристики и цоколевка транзистора КТ315:

На этом первую часть занятия по сборке светодиодной светомузыки заканчиваем и начинаем собирать детали. В следующей части занятия мы изучим программу для разработки печатных плат “Cadsoft Eagle” и изготовим печатную плату для нашего устройства с использованием пленочного фоторезиста.

Такая светодиодная цветомузыка подойдет для тех, кто слушает музыку на компьютере. Ее можно разместить внутри корпуса и он будет подсвечиваться в такт музыки.

Схема цветомузыки очень простая и не представляет никаких сложностей.


Необходимые компоненты:
1. 4 светодиода (любого цвета) 3мм
2. Р2 вилка
3. 2-позиционный переключатель
4. Биполярный транзистор TIP31
5. Коробка (если нужна), можно разместить и непосредственно в корпусе компьютера
6. Паяльник
7. Кабель

Подключаем 4 светодиода к +12 В компьютера, анод подключаем к 2-х позиционному выключателю, который в свою очередь соединяется с биполярным транзистором TIP31. Два незадействованных конца транзистора подключаем непосредственно к выводам штеккера для наушников или колонок Р2.

Все собранные компоненты устанавливаем в коробку (ящик), или непосредственно в корпус компьютера - это каждому на свое усмотрение. Мы сделали отверстия под светодиоды, переключатель и штеккер.

Монтаж светодиодной цветомузыки в коробку

Соедиянем светодиоды, транзистор и переключатель

1 of 2


Соединяем светодиоды


Общий собранный вид с транзисторами

Дальше - самое интересное. Необходимо спаять светодиоды между собой, транзистором и выключателем. По фотографиям это понятно без слов. Единственное, нам пришлось подбирать длину проводников так, чтобы они помещались в коробку.

Общий минус от светодиодов подключаем к среднему контакту переключателя. От переключателя одно из положений присоединяется к среднему пину транзистора, второе положение соедините согласно схемы цветомузыки, которую мы представили выше.

Монтаж проводов к штеккеру Р2

Заключительная стадия

1 of 2


Монтаж схемы диодной цветомузыки


Спаянный штеккер

Если разобрать штеккер от наушников, то внутри мы можем увидеть три разъема - левый и правый канал, земля. Один из каналов соединяем с левым пином транзистора Tip31. Если подключение Р2 будет через левый канал и он не будет "биться"с выходом компьютера, то наша схема не будет работать. Поэтому сразу правильно определяйтесь или экспериментируйте. Земля (обычно длинный разъем) должна присоединяться к правому пину транзистора.

Один из пинов переключателя должен соединяться с землей от транзистора. При таком соединении светодиоды начнут мигать, если на выходе будет какой-либо сигнал. Если с разъема Р2 не идет никакого сигнала, если сигнал будет с другой стороны, то они будут светиться постоянно.

Монтируем все в коробку, подключаем и проверяем работоспособность.

Структурно, любая цветомузыкальная(светомузыкальная) установка состоит из трех элементов. Блока управления, блока усиления мощности и выходного оптического устройства.

В качестве выходного оптического устройства можно использовать гирлянды, можно оформить его в виде экрана(классический вариант) или применить электрические светильники направленного действия - прожектора, фары.
Т. е. подходят любые средства, позволяющие создавать определенный набор красочных световых эффектов.

Блок усиления мощности - это усилитель(усилители) на транзисторах с тиристорными регуляторами на выходе. От параметров элементов использованых в нем зависит напряжение и мощность источников света выходного оптического устройства.

Блок управления контролирует интенсивность света, и чередование цветов. В сложных специальных установках, предназначенных для оформления сцены во время различных видов шоу - цирковых, театральных и эстрадных представлений этот блок управляется вручную.
Соответствено, требуется участие как минимум - одного, а максимум - группы операторов-осветителей.

Если блок управления контролируется непосредственно музыкой, работает по какой - либо заданной программе, то цветомузыкальная установка считается - автоматической.
Именно такого рода "цветомузыки" обычно собирают своими руками начинающие конструкторы - радиолюбители, на протяжении 50-ти последних лет.

Самая простая (и популярная) схема "цветомузыки" на тиристорах КУ202Н.


Это самая простая и пожалуй, самая популярная схема цветомузыкальной приставки, на тиристорах.
Тридцать лет назад я впервые увидел вблизи полноценную, работающую "светомузыку". Ее собрал мой однокласник, с помощью старшего брата. Это была именно эта схема. Несомненным ее достоинством является простота, при достаточно явном разделение режимов работы всех трех каналов. Лампы не мигают одновременно, красный канал низких частот устойчиво моргает в ритм с ударными, средний - зеленый откликается в диапазоне человеческого голоса, высокочастотный синий реагирует на все остальное тонкое - звенящее и пищащее.

Недостаток один - необходим предварительный усилитель мощности на 1-2 ватта. Моему товарищу приходилось почти "на полную" врубать свою "Электронику" для того, что бы добиться достаточно устойчивой работы устройства. В качестве входного трансформатора был использован понижающий тр-р от радиоточки. Вместо него можно использовать любой малогабаритный понижающий сетевой транс. Например, с 220 до 12 вольт. Только подключать его нужно наоборот - низковольтной обмоткой на вход усилителя. Резисторы любые, мощностью от 0,5 ватт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.

Схема "цветомузыки" на тиристорах КУ202Н, с активными частотными фильтрами и усилителем тока.

Схема предназначена для работы от линейного звукового выхода(яркость ламп не зависит от уровня громкости).
Рассмотрим подробнее, как она работает.
Звуковой сигнал подается с линейного выхода на первичную обмотку разделительного трансформатора. С вторичной обмотки трансформатора сигнал поступает на активные фильтры, через резисторы R1, R2, R3 регулирующие его уровень.
Раздельная регулировка необходима для настройки качественной работы устройства, путем выравнивания уровня яркости, каждого из трех каналов.

С помощью фильтров происходит разделение сигналов по частоте - на три канала. По первому каналу идет самая низкочастотная составляющая сигнала - фильтр обрезает все частоты выше 800 гц. Настройка фильтра производится с помощью подстроечного резистора R9. Номиналы конденсаторов С2 и С4 в схеме указаны - 1 мкФ, но как показала практика - их емкость следует увеличить, минимум, до 5 мкф.

Фильтр второго канала настроен на среднюю частоту - примерно от 500, до 2000 гц. Настройка фильтра производится с помощью подстроечного резистора R15. Номиналы конденсаторов С5 и С7 в схеме указаны - 0,015 мкФ, но их емкость следует увеличить, до 0,33 - 0,47 мкф.

По третьему, высокочастотному каналу проходит все что выше 1500(до 5000) гц. Настройка фильтра производится с помощью подстроечного резистора R22. Номиналы конденсаторов С8 и С10 в схеме указаны - 1000пФ, но их емкость следует увеличить, до 0,01 мкФ.

Далее, сигналы каждого канала в отдельности детектируются(используются германиевые транзисторы серии д9), усиливаются и подаются на оконечный каскад.
Оконечный каскад выполняется на мощных транзисторах, либо на тиристорах. В данном случае, это тиристоры КУ202Н.

Далее, идет оптическое устройство, конструкция и внешний которого зависит от фантазии конструктора, а начинка(лампы, светодиоды) - от рабочего напряжения и максимальной мощности выходного каскада.
В нашем случае - это лампы накаливания 220в, 60вт(если установить тиристоры на радиаторы - до 10 шт на канал).

Порядок сборки схемы.

О деталях приставки.
Транзисторы КТ315 можно заменить другими кремниевыми n-p-n транзисторами со статическим коэффициентом усиления не менее 50. Постоянные резисторы – МЛТ-0,5, переменные и подстроечные – СП-1, СПО-0,5. Конденсаторы – любого типа.
Трансформатор Т1 с коэффициентом 1:1, поэтому можно использовать любой с подходящим количеством витков. При самостоятельном изготовлении можно использовать магнитопровод Ш10х10, а обмотки намотать проводом ПЭВ-1 0,1-0,15 по 150-300 витков каждая.

Диодный мост для питания тиристоров(220в) выбирают исходя из предпологаемой мощности нагрузки, минимум - 2А. Если количество ламп на каждый канал увеличить - соответственно возрастет потребляемый ток.
Для питания транзисторов(12в) можно использовать любой стабилизированный блок питания расчитанный на рабочий ток минимум - 250 мА(а лучше - больше).

Сначала, каждый канал цветомузыки собирается в отдельности на макетной плате.
Причем, сборку начинают с выходного каскада. Собрав выходной каскад проверяют его работоспособность, подав на его вход сигнал достаточного уровня.
Если этот каскад отрабатывает нормально, - собирают активный фильтр. Далее - проверяют снова работоспособность того, что получилось.
В итоге, после испытания имеем - реально работающий канал.

Подобным образом необходимо собрать и отстроить все три канала. Подобное занудство гарантирует безусловную работоспособность устройства после "чистовой" сборки на монтажной плате, если работа проведена без ошибок и с применением "испытанных" деталей.

Возможный вариант печатного монтажа(для текстолита с односторонним фольгированием). Если использовать более габаритные конденсаторе в канале самых низких частот, расстояния между отверстиями и проводниками придется изменить. Применение текстолита с двухсторонним фольгированием может быть более технологичным вариантом - поможет избавиться от навесных проводов-перемычек.


Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт

Сложно найти такого человека, который не любил бы слушать музыку. Для удовлетворения данного желания приобретаются качественные музыкальные центры, колонки и иные устройства. Для получения еще большего удовольствия многие задумываются о создании специальных цветоэффектов, которые могут украсить любое звучание и создадут романтическую атмосферу на свидании или увеселительный настрой в процессе организации праздничной вечеринки. Цветомузыку также, как музыкальные центры, можно приобрести, а можно сделать и своими руками. Оптимальный вариант — сделать цветомузыку на светодиодах своими руками по одной из предложенных схем.

Преимущества светодиодной продукции

Современный рынок электроники представляет большое разнообразие светодиодных лент, которые обладают самыми разными цветовыми эффектами. С их помощью можно создать качественное точечное освещение, есть возможность сделать светомузыку с мигающими или размытыми эффектами.

В отличии от обычных лампочек, светодиоды характеризуются большим количеством положительных характеристик. Среди основных преимуществ светодиодных лент можно выделить:

  • широкая и разнообразная цветовая гамма;
  • передача насыщенных цветов;
  • разные варианты исполнения – линейки, модули, дискретные элементы, RGB-ленты;
  • высокая скорость срабатывания;
  • минимальный объем потребляемой энергии.

Ленты можно использовать в домашних условиях, в клубах и в кафе, можно эффектно подсвечивать витрины. В данной статье более подробно будет описан вариант светодиодной цветомузыки для обычного домашнего применения.

Простая схема с одним светильником

Для начала стоит изучить простую схему цветомузыки. Это устройство, которое выполняется на одном светодиоде, транзисторе и резисторе. Питание на такую цветомузыку можно подавать от постоянного источника тока напряжением 6-12 вольт. Работает устройство по принципу усилительного каскада с общим эмиттером. Воздействие в виде меняющегося по частоте сигнала и амплитуды поступает на основную базу. Как только частота колебаний превышает определенное пороговое значение, открывается транзистор и светодиод сразу вспыхивает.

Данная схема простой цветомузыки на светодиодах имеет один недостаток — темп мигания светодиода зависит полностью от уровня производимого звукового сигнала. Говоря иными словами, световой эффект будет активироваться только на определенном уровне производимой музыкальным центром громкости. При снижении интенсивности звучания свечение будет постоянным с редкими подмигиваниями.

Схема с одноцветной лентой

Данная цветомузыка на транзисторе собирается с применением светодиодной ленты в нагрузке. Для организации такой цветомузыки потребуется увеличить питание до 12 В, найти и установить транзистор с максимальным током коллектора, который превышает ток нагрузки, также потребуется пересчитать общий номинал резистора. Подобная цветомузыка достаточно проста, выполнена на одной одноцветной светодиодной ленте и идеально подойдет для начинающих радиолюбителей. Собрать ее можно без особых проблем в домашних условиях.

Простая трёхканальная схема

Чтобы получить цветомузыку, лишенную всех перечисленных выше недостатков, стоит использовать специальный трехканальный преобразователь звука. Питается такая схема из светодиодной ленты постоянным напряжением 9 В и в состоянии эффективно засветить по одному или два светодиода в каждом канале. Среди основных конструкционных элементов, которыми характеризуется такая цветомузыкальная схема, можно отметить:

  • три независимых усилительных каскада, которые собираются на транзисторах категории КТ315 (КТ3102);
  • в нагрузку транзисторов включены светодиоды разного цвета;
  • для элемента предварительного усиления может быть использован сетевой небольшой трансформатор понижающего характера.

Входящий сигнал подается на вторичную обмотку трансформатора, который в свою очередь выполняет две основные функции – развязывает на гальваническом уровне два устройства, а также усиливает звук с основного линейного выхода. После этого сигнал поступает на три параллельно расположенные и включенные фильтры, собранные на базе RC-цепей. Они работают на индивидуальной частотной полосе, которая прямо зависит от номинала конденсатора и резистора.

Цветомузыка с RGB лентой

Данная схема приставки осуществляет работу от 12 вольт и идеально подходит для установки на авто. Такая цветомузыка оптимально совмещает в себе основные функции ранее рассмотренных схем и в состоянии работать, как в режиме светильника, так и цветомузыки. Второй режим достигается за счет особого бесконтактного управления RGB-лентой посредством микрофона. Что касается режима светильника, то он основан на одновременном запуске свечения зеленого, красного и синего светодиода на полную мощность. Выбор режима можно осуществлять посредством специального переключателя, который находится на специальной плате.

Чтобы понять, как осуществляет работу данная приставка, стоит изучить ее последовательность действий. Основным источником сигнала здесь является микрофон, преобразующий колебания звука, исходящей от фонограммы . Полученный сигнал незначителен, потому требует усиления. Добиться этого можно посредством применения транзистора или специального операционного усилителя. После этого запускается автоматический регулятор уровня АРУ. Он эффективно удерживает колебания звука в разумных пределах и подготавливает его к последующей обработке. Встроенные фильтры разделяют сигнал на три части, каждая из которых работает в одном определенном частотном диапазоне. В завершении потребуется просто усилить предварительно подготовленный сигнал тока. Для этой цели используются специальные транзисторы, которые работают в ключевом режиме.

Приобретение готового ЦМУ

Если нет желания сделать цветомузыку для использования в домашних условиях, можно приобрести ЦМУ, то есть цветомузыкальную установку. Это готовое функциональное решение, в составе которого присутствует контроллер. Он будет обрабатывать звук, преобразуя его в светомузыкальное визуальное представление. В процессе воспроизведения света будет меняться его интенсивность и цветовое решение, создавая тем самым эффект самой настоящей дискотеки. Также в состав устройства ЦМУ входит панель со встроенными диодами.

В основе данных приспособлений может находиться спектральное разложение по частотам, где каждой из них будет соответствовать определенное цветовое решение или предварительно заданные регулировки с самыми разными эффектами и их чередованием. Осуществлять их настройку можно посредством входящего в комплект пульта дистанционного управления.

Важно! Современные ЦМУ очень просты в процессе инсталляции и настройки. Это идеальное решение для организации домашней вечеринки или дискотеки.

Заключение

Схем для самостоятельного выполнения установок цветомузыки существует достаточно много. Можно подобрать достаточно простой вариант, где просто будет меняться цвет RGB-ленты, до довольно сложных, которые в процессе работы будут создавать большое количество разнообразных эффектов, переливов и затуханий. В прямой зависимости от навыков можно выбрать и выполнить подходящий вариант. Достаточно немного потрудиться и создать что-то по-настоящему уникальное, это будет светооборудование, радующее переливами самых разных цветовых оттенков. Также не стоит забывать, что всегда есть возможность купить готовое решение цветомузыки и наполнить свой дом цветовыми оттенками и радостью.