Разъем pci express 3.0. Все о шине PCI и PCI Express – спецификации, различия и совместимость

Обычно домашний ПК обходится одной видеокартой, вставленной в PCI-E слот перпендикулярно материнской платой, или вообще встроенным видеоядром, но так бывает не всегда.

До недавнего времени удлиннители PCI-E были экзотикой. С ними сталкивались в основном сборщики серверного оборудования и энтузиасты, собиравшие ПК в уникальных корпусах наподобие такого:


Гибкий удлиннитель позволял расположить карту расширения параллельно материнской плате, за счёт чего можно было выиграть несколько сантиметров в толщине корпуса, или облегчить тепловой режим устройства, а в корпусах типа 1U по-другому было вообще никак.
Выглядели они тогда вот так:


Всё изменилось тогда, когда в широкие массы шагнул майнинг криптовалют.


Удлиннители оказались широко востребованы, так как без них 5-6-7-10-12-15 видеокарт в одну материнскую плату просто невозможно включить физически - одна видеокарта с учётом системы охлаждения занимает два(а иногда и три) слота по толщине и ещё требует рядом с собой хоть немного свободного пространства для доступа воздуха. Могут последовать возражения, что система жидкостного охлаждения позволяет уменьшить толщину «бутерброда» из плат, но на практике она при этом ещё и увеличит срок окупаемости фермы, так как качественный жидкостный теплообменник - довольно недешёвое изделие.


Одной из особенностей интерфейса PCI-E является совместимость устройств и шин с различной шириной.


Устройство, рассчитанное на ширину шины х1/х2/х4/х8, свободно работает в разъёме большей ширины, оставляя незадействованными часть линий данных, а видеокарта для шины с шириной х16, как правило, способна работать в разъёмах с меньшей шириной шины, хоть и на несколько сниженной скорости:


Больше результатов тестирования видеокарты на PCI-Express разной ширины можно увидеть . Разумеется, чем более качественные текстуры в игре, тем больше будет падение производительности. Особенно будут страдать при этом DX9-приложения.
Так как в майнинговых задачах даже пропускной способности интерфейса PCI-E x1 более чем достаточно, то за счёт этого появилась возможность снизить себестоимость удлиннителя путём исключения лишних линий. Изделие при этом стало выглядеть вот так:


Так как PCI-E x1 содержит всего 8 сигнальных линий(две дифференциальных пары линий данных, дифференциальная пара линий тактового сигнала REFCLK, линии сигналов WAKE# и PERST#), а мощные видеокарты в любом случае оборудованы разъёмами дополнительного питания, то стало возможным уложить весь требуемый набор сигнальных линий в один стандартный 9-жильный кабель USB 3.0, за счёт чего упростилась сборка. Изделие при этом приобрело следующий вид:


- Девайс приехал в антистатическом пакете с защёлкой.


В пакете - плата в разъём х1, плата с разъёмом х16, переходник SATA Power -> 6 pin и кабель USB 3.0(он же SuperSpeed). Длина гибкой части кабеля 530 мм, общая длина по окончаниям разъёмов 604 мм.


С разъёма SATA Power можно снять напряжения +12В(жёлтый провод), +5В(красный провод), +3,3В(оранжевый провод).


Платы PCI-Е требуют для своей работы напряжений +12В и +3,3В.


В данной версии девайса используется только линия +12В, +3,3В получается собственным преобразователем.


Для этого на плате с разъёмом х16 размещён step-down DC/DC конвертер.


В этом качестве использован ,


к выходу которого подключен линейный стабилизатор .
Внешние размеры платы - 43 х 127 мм, расстояние между центрами крепёжных отверстий - 35 х 96 мм.
Качество монтажа хорошее, флюс отмыт.


Обратная сторона платы закрыта изолирующей накладкой.




На плате с разъёмом х1 кроме 9-контактного гнезда никаких элементов нет.


Сборка несложна - в разъём х16 ставится видеокарта, 9-контактные гнёзда соединяются имеющимся в комплекте кабелем,


разъём х1 подключается к материнской плате ПК, а блок питания подключается через оставшийся переходник на 6 pin.


После этого устройство готово к работе.


Видеокарта успешно запустилась и отрапортовала о работе в режиме х1.
Удлиннитель может также пригодиться, если имеющиеся платы расширения мешают одна другой, а ещё с его помощью можно подключить к ноутбуку внешнюю видеокарту, если нет желания платить 50+$ за .
Если в ноутбуке есть ExpressCard - всё просто, распаиваем провода согласно данной схеме:


Если нету - придётся пожертвовать старой картой miniPCI-E.
С неё удаляются все детали…


и провода распаиваются на освободившиеся места.


Если в корпусе ноутбука не хватает свободного места, то можно пожертвовать разъёмом для телефонной линии,


так как dial-up в наше время уже не актуален, а в нашей стране уже и не поддерживается основным провайдером.


Полностью собранный переходник.


После установки в конструкция получилась вот такая:


И на тестовом настольном ПК она не запустилась. Подозреваю, что подесятка разъёмов на пути сигнала вносят слишком большие неоднородности в линии связи, поэтому опыты, видимо, придётся временно приостановить до тех пор, пока у меня не появится ноутбучная плата, которой будет в случае чего не жалко.

Вывод : устройство полностью работоспособно в рамках заявленной производителем функциональности и рекомендуется к покупке тем, кто занимается ремонтом и диагностикой компьютерного железа. Длина кабеля позволяет вытянуть разъём для видеокарты из корпуса на стол и не дёргать каждый раз крышку и материнскую плату.

Планирую купить +32 Добавить в избранное Обзор понравился +56 +109

WiFi модули и другие подобные устройства. Разработку данной шины начала компания Intel в 2002 году. Сейчас разработку новых версий данной шины занимается некоммерческая организация PCI Special Interest Group.

На данный момент шина PCI Express полностью заменила такие устаревшие шины как AGP, PCI и PCI-X. Шина PCI Express размещается в нижней части материнской платы в горизонтальном положении.

PCI Express это шина, которая была разработана на основе шины PCI. Основные отличия между PCI Express и PCI лежат на физическом уровне. В то время как PCI использует общую шину, в PCI Express используется топология типа звезда. Каждое устройство подключается к общему коммутатору отдельным соединением.

Программная модель PCI Express во многом повторяет модель PCI. Поэтому большинство существующих PCI контроллеров могут быть легко доработаны для использования шины PCI Express.

Слоты PCI Express и PCI на материнской плате

Кроме этого, шина PCI Express поддерживает такие новые возможности как:

  • Горячее подключение устройств;
  • Гарантированная скорость обмена данными;
  • Управление потреблением энергии;
  • Контроль целостности передаваемой информации;

Как работает шина PCI Express

Для подключения устройств шина PCI Express использует двунаправленное последовательное соединение. При этом такое соединение может иметь одну (x1) или несколько (x2, x4, x8, x12, x16 и x32) отдельных линий. Чем больше таких линий используется, тем большую скорость передачи данных может обеспечить шина PCI Express. В зависимости от количества поддерживаемых линий размер сорта на материнской плате будет отличаться. Существуют слоты с одной (x1), четырьмя (x4) и шестнадцатью (x16) линиями.

Наглядная демонстрация размеров слота PCI Express

При этом любое PCI Express устройство может работать в любом слоте, если слот имеет такое же или большее количество линий. Это позволяет установить PCI Express карту с разъемом x1 в слот x16 на материнской плате.

Пропускная способность PCI Express зависит от количества линий и версии шины.

В одну/обе стороны в Гбит/с

Количество линий

PCIe 1.0 2/4 4/8 8/16 16/32 24/48 32/64 64/128
PCIe 2.0 4/8 8/16 16/32 32/64 48/96 64/128 128/256
PCIe 3.0 8/16 16/32 32/64 64/128 96/192 128/256 256/512
PCIe 4.0 16/32 32/64 64/128 128/256 192/384 256/512 512/1024

Примеры PCI Express устройств

В первую очередь PCI Express используется для подключения дискретных видеокарт. С момента появления данной шины абсолютно все видеокарты используют именно ее.

Видеокарта GIGABYTE GeForce GTX 770

Однако это далеко не все что умеет шина PCI Express. Ее используют производители других комплектующих.

Звуковая карта SUS Xonar DX

SSD накопитель OCZ Z-Drive R4 Enterprise

Какие разъемы бывают на материнской плате и для чего они предназначены. Про это вы узнаете в данной статье.

Разъем для установки процессора или сокет

Разъем для установки процессора – это большой разъем в форме прямоугольника. Как правило, данный разъем находится в верхней части платы.

Разъемы бывают различных типов. Для того чтобы установить процессор на материнскую плату, он должен быть совместим с разъемом на плате.

Бывают случаи, когда тип разъема процессора и платы совпадает, но плата не поддерживает эту модель процессора. В результате такая связка материнской платы и процессора не будет работать.

разъем для процессора или сокет

Современные процессоры от Intel используют такие типы разъемов:

  • Socket 1150
  • Socket 1155
  • Socket 1356
  • Socket 1366
  • Socket 2011

Современные процессоры от AMD используют такие типы разъемов:

  • Socket AM3
  • Socket AM3+
  • Socket FM1
  • Socket FM2

Разъемы для установки оперативной памяти или слоты

Разъемы для установки оперативной памяти – это длинные вертикальные разъемы размещенные справа или по обе стороны от процессора. Современные разъемы для оперативной памяти на материнской плате относятся к типу DDR3.

На более старых моделях материнских плат могут использоваться разъемы DDR2 или DDR1. Все эти типы не совместимы друг с другом. Поэтому установить DDR3 в разъем для DDR2 не получится.

Разъемы PCI Express

Разъемы PCI Express – это разъемы на материнской плате, которые предназначены для установки дополнительных плат. Эти разъемы расположены в нижней части материнской платы.

Разъемы PCI EXPRESS

Разъем PCI Express может быть нескольких типов: PCI Express x1, PCI Express x4 и PCI Express x16. В большинстве случаев, разъем PCI Express x16 используется для установки видеокарт, а остальные слоты для установки других плат расширения, например звуковых карт.

Существует три версии PCI Express. Это PCI Express 1.0, PCI Express 2.0 и PCI Express 3.0. Все эти версии полностью совместимы. Это позволяет устанавливать новые устройства с поддержкой PCI Express 3.0 в старые материнские платы с PCI Express 1.0. Единственное ограничение это скорость передачи данных. При установке нового устройства в старую версию PCI Express устройство будет работать на скорости старой версии PCI Express.

Разъем PCI – это старый разъем для подключения плат расширения. Сейчас он практически не используется и устанавливается только в некоторые материнские платы.

Разъем PCI можно найти в нижней части материнской платы, рядом с разъемами PCI Express.

Разъемы SATA это разъемы, предназначенные для подключения жестких дисков, SSD накопителей и дисководов.

Эти разъемы размещены в нижней части материнской платы и в большинстве случаев окрашены в красный цвет.

Существует три версии SATA, это SATA 1.0, SATA 2.0 и SATA 3.0. Все эти версии полностью совместимы и отличаются только скоростью передачи данных. Для SATA 1.0 скорость составляет 1.5 Гбит/с, для SATA 2.0 – 3 Гбит/с, а для SATA 3.0 – 6 Гбит/с.

Разъем для подключения питания материнской платы размещается справа от оперативной памяти. Он может состоять из 20, 24 или 28 контактов.

В этот разъем нужно подключить питание от блока питания.

Вконтакте

Когда мы говорим о шине PCI Express(PCI-E), то, пожалуй, первое что выделяет ее среди других аналогичных решений – это эффективность. Благодаря этой современной шине, повышается производительность компьютера, улучшается качество графики.

На протяжении многих лет, для подключения видеокарты к материнской плате, использовалась шина PCI(Peripheral Component Interconnect), помимо этого она использовалась также и для подключения некоторых других устройств, например, сетевой и звуковой карты.

Вот как выглядят эти слоты:

PCI-Express фактически стало следующим поколением шины PCI, предложив улучшенную функциональность и производительность. Она, использует последовательное соединение, в котором имеется несколько линий, каждая из которых ведет к соответствующему устройству, т.е. каждое периферийное устройство получает свою собственную линию, благодаря чему возрастает общая производительность компьютера.

PCI-Express поддерживает «горячее» подключение, потребляет меньшее, чем ее предшественники количество энергии, контролирует целостность передаваемых данных. К тому же она совместима с драйверами PCI – шины. Еще одной замечательной особенностью данной шины, является ее масштабируемость, т.е. pci express card подключается и работает в любом слоте аналогичной или большей пропускной способности. По всей вероятности, эта функция будет обеспечивать ее использование в последующие годы.

Традиционный тип слота PCI был достаточно хорош для основных аудио/видео функций. С шиной AGP, схема работы с мультимедийными данными улучшилась, соответственно возросло и качество аудио/видео данных. Это было незадолго до того момента, когда достижения в области микроархитектуры процессоров стали еще нагляднее демонстрировать медлительность шины PCI, которая заставляла самые быстрые и новейшие на тот момент времени модели компьютеров буквально еле-еле тащиться.

Характеристики и пропускная способность шины PCI-E

Она может иметь от одной двунаправленной линии соединения x1, до x32 (32 линий). Линия функционирует по принципу точка к точке. Современные версии предоставляют гораздо большую пропускную способность, по сравнению со своими предшественниками. x16 можно использовать для подключения видеокарты, а x1 и x2 могут использоваться для подключения обычных карт.

Вот как выглядят слоты х1 и pci express x16 на :

PCI-E
Количество линий x1 x2 x4 x8 x16 x32
Ширина полосы 500 Мб /с 1000 МБ /с 2000 Мб /с 4000 МБ /с 8000 МБ / с 16000 Мб / с

Версии PCI-E и совместимость

Когда речь идет о компьютерах, то любое упоминание о версиях ассоциируется с проблемами совместимости. И, как любая другая современная технология, PCI-E постоянно развивается и модернизируется. Последний доступный вариант pci express 3.0, но уже ведется развитие шины PCI-E версии 4.0., которая должна появиться примерно в 2015 году(pci express 2.0 практически устарела).
Взгляните на следующую таблицу совместимости PCI-E.
Версии PCI-E 3,0 2,0 1,1
Общая пропускная способность
(X16) 32 Гб / с 16 Гб / с 8 Гб / с
Скорость передачи данных 8,0 ГТ / с 5,0 ГТ / с 2,5 ГТ / с

Версия PCI-E не имеет никакого влияния на функциональность карты. Наиболее отличительной чертой данного интерфейса является его прямая и обратная совместимость, что делает его безопасным и способным к синхронизации со многими вариантами карт, независимо от интерфейса версии. То есть вы можете в слот PCI-Express первой версии, вставить карту второй или третьей версии и она будет работать, хотя и с некоторой потерей производительности. Точно так же и в слот PCI-E третьей версии можно устанавливать карту первой версии PCI-Express. В настоящее время все современные модели видеокарт от NVIDIA и AMD совместимы с такой шиной.

А это на закуску:

Если спросить, какой интерфейс следует использовать для твердотельного накопителя с поддержкой протокола NVMe, то любой человек (вообще знающий, что такое NVMe) ответит: конечно PCIe 3.0 x4! Правда, с обоснованием у него, скорее всего, возникнут сложности. В лучшем случае получим ответ, что такие накопители поддерживают PCIe 3.0 x4, а пропускная способность интерфейса имеет значение. Иметь-то имеет, однако все разговоры об этом начались только тогда, когда некоторым накопителям на некоторых операциях стало тесно в рамках «обычного» SATA. Но ведь между его 600 МБ/с и (столь же теоретическими) 4 ГБ/с интерфейса PCIe 3.0 x4 - просто пропасть, причем заполненная массой вариантов! А вдруг и одной линии PCIe 3.0 хватит, поскольку это уже в полтора раза больше SATA600? Масла в огонь подливают производители контроллеров, грозящиеся в бюджетной продукции перейти на PCIe 3.0 x2, а также тот факт, что у многих пользователей и такого-то нет. Точнее, теоретически есть, но высвободить их можно, лишь переконфигурировав систему или даже что-то в ней поменяв, чего делать не хочется. А вот купить топовый твердотельный накопитель - хочется, но есть опасения, что пользы от этого не будет совсем никакой (даже морального удовлетворения от результатов тестовых утилит).

Но так это или нет? Иными словами, нужно ли действительно ориентироваться исключительно на поддерживаемый режим работы - или все-таки на практике можно поступиться принципами ? Именно это мы сегодня и решили проверить. Пусть проверка будет быстрой и не претендующей на исчерпывающую полноту, однако полученной информации должно оказаться достаточно (как нам кажется) хотя бы для того, чтобы задуматься... А пока вкратце ознакомимся с теорией.

PCI Express: существующие стандарты и их пропускная способность

Начнем с того, что́ представляет собой PCIe и с какой скоростью этот интерфейс работает. Часто его называют «шиной», что несколько неверно идеологически: как таковой шины, с которой соединены все устройства, нет. На деле имеется набор соединений «точка-точка» (похожий на многие другие последовательные интерфейсы) с контроллером в середине и присоединенными к нему устройствами (каждое из которых само по себе может быть и концентратором следующего уровня).

Первая версия PCI Express появилась почти 15 лет назад. Ориентация на использование внутри компьютера (нередко - и в пределах одной платы) позволила сделать стандарт скоростным: 2,5 гигатранзакции в секунду. Поскольку интерфейс последовательный и дуплексный, одна линия PCIe (x1; фактически атомарная единица) обеспечивает передачу данных на скоростях до 5 Гбит/с. Однако в каждом направлении - лишь половина от этого, т. е. 2,5 Гбит/с, причем это полная скорость интерфейса, а не «полезная»: для повышения надежности каждый байт кодируется 10 битами, так что теоретическая пропускная способность одной линии PCIe 1.x составляет примерно 250 МБ/с в каждую сторону. На практике нужно еще передавать служебную информацию, и в итоге правильнее говорить о ≈200 МБ/с передачи пользовательских данных. Что, впрочем, на тот момент времени не только покрывало потребности большинства устройств, но и обеспечивало солидный запас: достаточно вспомнить, что предшественница PCIe в сегменте массовых системных интерфейсов, а именно шина PCI, обеспечивала пропускную способность в 133 МБ/с. И даже если рассматривать не только массовую реализацию, но и все варианты PCI, то максимумом были 533 МБ/с, причем на всю шину, т. е. такая ПС делилась на все подключенные к ней устройства. Здесь же 250 МБ/с (поскольку и для PCI приводится обычно полная, а не полезная пропускная способность) на одну линию - в монопольном использовании. А для устройств, которым нужно больше, изначально была предусмотрена возможность агрегирования нескольких линий в единый интерфейс, по степеням двойки - от 2 до 32, т. е. предусмотренный стандартом вариант х32 в каждую сторону мог передавать уже до 8 ГБ/с. В персональных компьютерах х32 не использовался из-за сложности создания и разведения соответствующих контроллеров и устройств, так что максимумом стал вариант с 16 линиями. Использовался он (да и сейчас используется) в основном видеокартами, поскольку большинству устройств столько не требуется. Вообще, немалому их количеству и одной линии вполне достаточно, но некоторые применяют с успехом и х4, и х8: как раз по накопительной теме - RAID-контроллеры или SSD.

Время на месте не стояло, и около 10 лет назад появилась вторая версия PCIe. Улучшения касались не только скоростей, но и в этом отношении был сделан шаг вперед - интерфейс начал обеспечивать 5 гигатранзакций в секунду с сохранением той же схемы кодирования, т. е. пропускная способность удвоилась. И еще раз она удвоилась в 2010 году: PCIe 3.0 обеспечивает 8 (а не 10) гигатранзакций в секунду, но избыточность уменьшилась - теперь для кодирования 128 бит используется 130, а не 160, как ранее. В принципе, и версия PCIe 4.0 с очередным удвоением скоростей уже готова появиться на бумаге, но в ближайшее время в железе мы ее массово вряд ли увидим. На самом деле и PCIe 3.0 до сих пор в массе платформ используется совместно с PCIe 2.0, потому что и производительность последней для многих сфер применения просто... не нужна. А где нужна - работает старый добрый метод агрегации линий. Только каждая из них стала за прошедшие годы вчетверо быстрее, т. е. PCIe 3.0 х4 - это PCIe 1.0 x16, самый быстрый слот в компьютерах середины нулевых. Именно этот вариант поддерживают топовые контроллеры SSD, и именно его рекомендуется использовать. Понятно, что если такая возможность есть - много не мало. А если ее нет? Будут ли возникать какие-то проблемы, и если да, то какие? Вот с этим-то вопросом нам и предстоит разобраться.

Методика тестирования

Провести тесты с разными версиями стандарта PCIe несложно: практически все контроллеры позволяют использовать не только поддерживаемый ими, но и все более ранние. Вот с количеством линий - сложнее: нам хотелось непосредственно протестировать и варианты с одной-двумя линиями PCIe. Используемая нами обычно плата Asus H97-Pro Gamer на чипсете Intel H97 полного набора не поддерживает, но кроме «процессорного» слота х16 (который обычно и используется) на ней есть еще один, работающий в режимах PCIe 2.0 х2 или х4. Вот этой тройкой мы и воспользовались, добавив к ней еще и режим PCIe 2.0 «процессорного» слота, дабы оценить, есть ли разница. Все-таки в этом случае между процессором и SSD посторонних «посредников» нет, а вот при работе с «чипсетным» слотом - есть: собственно чипсет, фактически соединяющийся с процессором тем же PCIe 2.0 x4. Можно было добавить еще несколько режимов работы, но основную часть исследования мы все равно собирались провести на другой системе.

Дело в том, что мы решили воспользоваться случаем и заодно проверить одну «городскую легенду», а именно поверие о полезности использования топовых процессоров для тестирования накопителей. Вот и взяли восьмиядерный Core i7-5960X - родственника обычно применяемого в тестах Core i3-4170 (это Haswell и Haswell-E), но у которого ядер в четыре раза больше. Кроме того, обнаруженная в закромах плата Asus Sabertooth X99 нам сегодня полезна наличием слота PCIe x4, на деле способного работать как х1 или х2. В этой системе мы протестировали три варианта х4 (PCIe 1.0/2.0/3.0) от процессора и чипсетные PCIe 1.0 х1, PCIe 1.0 х2, PCIe 2.0 х1 и PCIe 2.0 х2 (во всех случаях чипсетные конфигурации отмечены на диаграммах значком (c) ). Есть ли смысл сейчас обращаться к первой версии PCIe, с учетом того, что вряд ли найдется хоть одна плата с поддержкой только этой версии стандарта, способная загрузиться с NVMe-устройства? С практической точки зрения - нет, а вот для проверки априори предполагаемого соотношения PCIe 1.1 х4 = PCIe 2.0 х2 и подобных оно нам пригодится. Если проверка покажет, что масштабируемость шины соответствует теории, значит, и неважно, что нам не удалось пока получить практически значимые способы подключения PCIe 3.0 x1/х2: первый будет идентичен как раз PCIe 1.1 х4 или PCIe 2.0 х2, а второй - PCIe 2.0 х4. А они у нас есть.

В плане ПО мы ограничились только Anvil’s Storage Utilities 1.1.0: разнообразные низкоуровневые характеристики накопителей она измеряет неплохо, а ничего другого нам и не нужно. Даже наоборот: любое влияние других компонентов системы является крайне нежелательным, так что низкоуровневая синтетика для наших целей безальтернативна.

В качестве «рабочего тела» мы использовали Patriot Hellfire емкостью 240 ГБ . Как было установлено при его тестировании, это не рекордсмен по производительности, но его скоростные характеристики вполне соответствуют результатам лучших SSD того же класса и той же емкости. Да и более медленные устройства на рынке уже есть, причем их будет становиться все больше. В принципе, можно будет повторить тесты и с чем-нибудь более быстрым, однако, как нам кажется, необходимости в этом нет - результаты предсказуемы. Но не станем забегать вперед, а посмотрим, что же у нас получилось.

Результаты тестов

Тестируя Hellfire, мы обратили внимание на то, что максимальную скорость на последовательных операциях из него можно «выжать» лишь многопоточной нагрузкой, так что это тоже надо принимать во внимание на будущее: теоретическая пропускная способность на то и теоретическая, что «реальные» данные, полученные в разных программах по разным сценариям, будут больше зависеть не от нее, а от этих самых программ и сценариев - в том случае, конечно, когда не помешают обстоятельства непреодолимой силы:) Как раз такие обстоятельства мы сейчас и наблюдаем: выше уже было сказано, что PCIe 1.x x1 - это ≈200 МБ/с, и именно это мы и видим. Две линии PCIe 1.x или одна PCIe 2.0 - вдвое быстрее, и именно это мы и видим. Четыре линии PCIe 1.x, две PCIe 2.0 или одна PCIe 3.0 - еще вдвое быстрее, что подтвердилось для первых двух вариантов, так что и третий вряд ли будет отличаться. То есть в принципе масштабируемость, как и предполагалось, идеальная: операции линейные, флэш с ними справляется хорошо, так что интерфейс имеет значение. Флэш перестает справляться хорошо на PCIe 2.0 x4 для записи (значит, подойдет и PCIe 3.0 x2). Чтение «может» больше, но последний шаг дает уже полутора-, а не двукратный (каким он потенциально должен быть) прирост. Также отметим, что заметной разницы между чипсетным и процессорным контроллером нет, да и между платформами тоже. Впрочем, LGA2011-3 немного впереди, но на самую малость.

Все ровно и красиво. Но шаблоны не рвет : максимум в этих тестах составляет лишь немногим больше 500 МБ/с, а это вполне по силам даже SATA600 или (в приложении к сегодняшнему тестированию) PCIe 1.0 х4 / PCIe 2.0 х2 / PCIe 3.0 х1 . Именно так: не стоит пугаться выпуску бюджетных контроллеров под PCIe х2 или наличию лишь такого количества линий (причем версии стандарта 2.0) в слотах М.2 на некоторых платах, когда больше-то и не нужно. Иногда и столько не нужно: максимальные результаты достигнуты при очереди в 16 команд, что для массового ПО не типично. Чаще встречается очередь с 1-4 командами, а для этого обойтись можно и одной линией самого первого PCIe и даже самым первым SATA. Впрочем, накладные расходы и прочее имеют место быть, так что быстрый интерфейс полезен. Однако излишне быстрый - разве что не вреден.

А еще в этом тесте по-разному ведут себя платформы, причем с единичной очередью команд - принципиально по-разному. «Беда» вовсе не в том, что много ядер - плохо. Они тут все равно не используются, разве что одно, и не настолько, чтоб вовсю развернулся буст-режим. Вот и имеем разницу где-то в 20% по частоте ядер и полтора раза по кэш-памяти - она в Haswell-E работает на более низкой частоте, а не синхронно с ядрами. В общем, топовая платформа может пригодиться разве что для вышибания максимума «йопсов» посредством максимально многопоточного режима с большой глубиной очереди команд. Жаль только, что с точки зрения практической работы это совсем уж сферическая синтетика в вакууме:)

На записи положение дел принципиально не изменилось - во всех смыслах. Но, что забавно, на обеих системах самым быстрым оказался режим PCIe 2.0 х4 в «процессорном» слоте. На обеих! И при многократных проверках/перепроверках. Тут уж поневоле задумаешься, нужны ли эти ваши новые стандарты или лучше вообще никуда не торопиться...

При работе с блоками разного размера теоретическая идиллия разбивается о то, что повышение скорости интерфейса все же имеет смысл. Результирующие цифры такие, что хватило бы пары линий PCIe 2.0, но реально в таком случае производительность ниже, чем у PCIe 3.0 х4, пусть и не в разы. И вообще тут бюджетная платформа топовую «забивает» в куда большей степени. А ведь как раз такого рода операции в основном в прикладном ПО и встречаются, т. е. эта диаграмма - наиболее приближенная к реальности. В итоге нет ничего удивительного, что никакого «вау-эффекта» толстые интерфейсы и модные протоколы не дают. Точнее, переходящему с механики - дадут, но ровно такой же, какой ему обеспечит любой твердотельный накопитель с любым интерфейсом.

Итого

Для облегчения восприятия картины по больнице в целом мы воспользовались выдаваемым программой баллом (суммарным - по чтению и записи), проведя его нормирование по «чипсетному» режиму PCIe 2.0 x4: на данный момент именно он является наиболее массово доступным, поскольку встречается даже на LGA1155 или платформах AMD без необходимости «обижать» видеокарту. Кроме того, он эквивалентен PCIe 3.0 x2, который готовятся освоить бюджетные контроллеры. Да и на новой платформе AMD АМ4, опять же, именно этот режим как раз можно получить без влияния на дискретную видеокарту.

Итак, что мы видим? Применение PCIe 3.0 x4 при наличии возможности является, безусловно, предпочтительным, но не необходимым: NVMe-накопителям среднего класса (в своем изначально топовом сегменте) он приносит буквально 10% дополнительной производительности. Да и то - за счет операций в общем-то не столь уж часто встречающихся на практике. Для чего же в данном случае реализован именно этот вариант? Во-первых, была такая возможность, а запас карман не тянет. Во-вторых, есть накопители и побыстрее, чем наш тестовый Patriot Hellfire. В-третьих, есть такие области деятельности, где «атипичные» для настольной системы нагрузки - как раз вполне типичные. Причем именно там наиболее критично быстродействие системы хранения данных или, по крайней мере, возможность сделать ее часть очень быстрой. Но к обычным персональным компьютерам это все не относится.

В них, как видим, и использование PCIe 2.0 x2 (или, соответственно, PCIe 3.0 х1) не приводит к драматическому снижению производительности - лишь на 15-20%. И это несмотря на то, что потенциальные возможности контроллера в этом случае мы ограничили в четыре раза! Для многих операций и такой пропускной способности достаточно. Вот одной линии PCIe 2.0 уже недостаточно, поэтому контроллерам имеет смысл поддерживать именно PCIe 3.0 - и в условиях жесткой нехватки линий в современной системе это будет работать неплохо. Кроме того, полезна ширина х4 - даже при отсутствии поддержки современных версий PCIe в системе она все равно позволит работать с нормальной скоростью (пусть и медленнее, чем могло бы потенциально), если найдется более-менее широкий слот.

В принципе, большое количество сценариев, в которых узким местом оказывается собственно флэш-память (да, это возможно и присуще не только механике), приводит к тому, что четыре линии третьей версии PCIe на этом накопителе обгоняют одну первой примерно в 3,5 раза - теоретическая же пропускная способность этих двух случаев различается в 16 раз. Из чего, разумеется, не следует, что нужно спешно бежать осваивать совсем медленные интерфейсы - их время ушло безвозвратно. Просто многие возможности быстрых интерфейсов могут быть реализованы лишь в будущем. Или в условиях, с которыми обычный пользователь обычного компьютера никогда в жизни непосредственно не столкнется (за исключением любителей меряться известно чем). Собственно, и всё.